
Viinex 3.0

User’s Guide

2021

User’s Guide Viinex 3.0

Contents

1 Overview 8

2 Configuration 9
2.1 General purpose objects . 10

2.1.1 RTSP video source . 11
2.1.2 ONVIF device . 14
2.1.3 H264 video source plugin . 15
2.1.4 Raw video source . 17
2.1.5 Video renderer . 21
2.1.6 Stream switch . 23
2.1.7 Video archive . 24
2.1.8 Recording controller . 26
2.1.9 Rules . 27
2.1.10 Replication source . 28
2.1.11 Replication sink . 29
2.1.12 Modbus GPIO-related event source . 31
2.1.13 Video channel from a third-party VMS 33
2.1.14 PostgreSQL connection . 34
2.1.15 Script . 37
2.1.16 External process . 39
2.1.17 RTSP server . 42
2.1.18 WebRTC server . 44
2.1.19 Web server . 46
2.1.20 Publisher for objects in configuration clusters 48
2.1.21 Floating license server . 49

2.2 Third-party video management systems . 50
2.2.1 Milestone XProtect . 51
2.2.2 Geutebrück G-Core . 52
2.2.3 Qognify (SeeTec) Cayuga . 53
2.2.4 Pelco VideoXpert . 55
2.2.5 Bosch BVMS . 56
2.2.6 DSSL Trassir . 58
2.2.7 Macroscop and Eocortex . 58
2.2.8 ITV|AxxonSoft Intellect . 60
2.2.9 Plugins for other VMS integrations . 60

2.3 Video analytics . 62
2.3.1 Vehicle license plate recognition . 62
2.3.2 Freight container code recognition . 63
2.3.3 Face detection . 64
2.3.4 Railcar identification number recognition 65

2.4 Common configuration sections . 67
2.4.1 RTP transport priority . 67
2.4.2 Credentials database . 67
2.4.3 Raw video device operation mode . 69

2

https://viinex.com/

User’s Guide Viinex 3.0

2.4.4 Video encoder . 71
2.4.5 Overlay . 72
2.4.6 Analytics engine . 74
2.4.7 Video analytics module . 76
2.4.8 Video renderer layout . 79

2.5 Links . 81
2.5.1 Video source – Video archive . 84
2.5.2 Video source – Recording controller . 84
2.5.3 Recording controller – Video archive 84
2.5.4 Video source – Video renderer . 84
2.5.5 Video source – Stream switch . 84
2.5.6 Video source – WebRTC server . 85
2.5.7 Video source – RTSP server . 85
2.5.8 Video archive – RTSP server . 85
2.5.9 Video source – Web server . 85
2.5.10 Event source – Web server . 85
2.5.11 Snapshot source – Web server . 85
2.5.12 Overlay control – Web server . 86
2.5.13 Layout control – Web server . 86
2.5.14 PTZ control – Web server . 86
2.5.15 WebRTC server – Web server . 86
2.5.16 Vehicle license plate recognizer . 86
2.5.17 Face detection . 87
2.5.18 Recording controller – Web server . 88
2.5.19 Recording controller – Rule . 88
2.5.20 Rule – Event source . 88
2.5.21 Video archive – Web server . 88
2.5.22 Video archive – Replication source . 88
2.5.23 Video archive – Replication sink . 88
2.5.24 Replication sink – Web server . 89

2.6 License information . 89
2.6.1 Local license document . 90
2.6.2 Floating license client . 90

2.7 Split configuration . 91

3 HTTP API 96
3.1 Web server . 96

3.1.1 Enumerate published components . 96
3.1.2 Obtain the metainformation on published components 97

3.2 Authentication . 98
3.2.1 Authentication challenge . 98
3.2.2 Authentication response . 99

3.3 Environment . 101
3.3.1 Attached SenseLock USB dongles . 101
3.3.2 License document content . 102
3.3.3 Probe for licenses . 104
3.3.4 Obtain Viinex 3.0 software version . 105
3.3.5 Discover visible ONVIF devices . 106
3.3.6 Probe an ONVIF device . 108
3.3.7 Discover connected raw video sources 111

3.4 Video source . 113
3.4.1 Status information . 113

3

https://viinex.com/

User’s Guide Viinex 3.0

3.4.2 Live stream . 114
3.5 Video archive . 115

3.5.1 Status and statistics . 115
3.5.2 Archive contents . 116
3.5.3 Disk usage for a specific time interval 117
3.5.4 Overall disk usage for a specific time interval 118
3.5.5 Media export . 119
3.5.6 Media playback . 120
3.5.7 Remove records from video archive . 121

3.6 Recording controller . 122
3.6.1 Status information . 122
3.6.2 Change recording status . 123
3.6.3 Flush accumulated video data to disk 124

3.7 Managed replication . 125
3.7.1 Enqueue a new replication task . 125
3.7.2 Get information on replication task . 127
3.7.3 Manage status of replication task . 129
3.7.4 Remove a replication task . 130
3.7.5 Enumerate all replication tasks . 131
3.7.6 Get the timeline from a VMS channel 131

3.8 Snapshots . 132
3.8.1 Get a snapshot from the snapshot source 132

3.9 Overlay . 134
3.9.1 Clear overlay . 134
3.9.2 Change overlay bitmap . 135
3.9.3 Change overlay HTML . 136

3.10 Video renderer . 136
3.11 Layout control . 137

3.11.1 Get the names of linked video sources 137
3.11.2 Set the layout for the video renderer 137
3.11.3 Set the background color or background image 139
3.11.4 Set or clear the image for viewports of disconnected video sources . . . 140

3.12 Stream switch . 141
3.12.1 Get the names of linked video sources 141
3.12.2 Switch to a specific stream . 142

3.13 PTZ control . 143
3.13.1 Get the PTZ node description . 143
3.13.2 Get presets . 145
3.13.3 Create a preset . 146
3.13.4 Remove a preset . 147
3.13.5 Update a preset . 148
3.13.6 Go to a specified preset . 148
3.13.7 Update the “home” position . 149
3.13.8 Go to the “home” position . 150
3.13.9 Get the coordinates of a current position 150
3.13.10Move the PTZ device . 151
3.13.11Stop the PTZ motion . 152

3.14 WebRTC signaling . 153
3.14.1 Obtain a general information on WebRTC server 153
3.14.2 Create a new session . 154
3.14.3 Media data request format . 155
3.14.4 Provide an SDP answer for a session 157

4

https://viinex.com/

User’s Guide Viinex 3.0

3.14.5 Update an existing session . 159
3.14.6 Get session status . 159
3.14.7 Gracefully shutdown a WebRTC session 160

3.15 PostgreSQL database . 161
3.15.1 Get the summary for events stored in PostgreSQL database 161
3.15.2 Retreive Viinex 3.0 events from PostgreSQL database 162

3.16 Vehicle license plate recognition . 164
3.16.1 Perform recognition on a given still image 164
3.16.2 Perform recognition on a video source 165
3.16.3 Obtain a snapshot of a recently recognized vehicle 167

3.17 Freight container code recognition . 168
3.17.1 Perform recognition on a given still image 168
3.17.2 Perform container code recognition on a video stream 169
3.17.3 Obtain a snapshot of a recently recognized container code 170

3.18 Video analytics in “freeflow” mode . 171
3.19 Railcar identification number recognition . 172
3.20 Face detection . 174

3.20.1 Perform face detection on a given still image 174
3.20.2 Perform face detection on a video sequence 175
3.20.3 Obtain a snapshot of a recently detected face 176

3.21 Abstract interfaces . 177
3.21.1 Stateful . 177
3.21.2 Updateable . 178

3.22 WebSocket interface . 179
3.23 Configuration clusters . 181

3.23.1 Enumerate existing clusters . 182
3.23.2 Create a new cluster of objects . 182
3.23.3 Remove an existing cluster of objects 183
3.23.4 Enumerate components published by a cluster 184
3.23.5 Obtain the metainformation on components published by a cluster . . . 184
3.23.6 Access Viinex 3.0 objects in configuration clusters 185
3.23.7 Obtaining events from a cluster . 186

4 Scripting and JS API 187
4.1 Execution model and handlers . 187

4.1.1 onload . 188
4.1.2 ontimeout . 188
4.1.3 onevent . 188
4.1.4 onupdate . 189
4.1.5 Example . 189
4.1.6 Asynchronous operations and anonymous callbacks 191

4.2 General puropose functions . 192
4.2.1 vnx.publish() . 192
4.2.2 vnx.timeout() . 192
4.2.3 vnx.timer.delay() . 193
4.2.4 vnx.event() . 194
4.2.5 Logging . 195
4.2.6 require() and modules . 195
4.2.7 Linked objects . 196
4.2.8 Configuration clusters . 197
4.2.9 Local filesystem . 198
4.2.10 HTTP client . 199

5

https://viinex.com/

User’s Guide Viinex 3.0

4.3 Application interfaces . 202
4.3.1 RecControl . 202
4.3.2 PtzControl . 203
4.3.3 LayoutControl . 204
4.3.4 StreamSwitchControl . 204
4.3.5 Stateful . 205
4.3.6 Updateable . 205
4.3.7 SnapshotSource . 205

5 Native API 209
5.1 Brief C and C++ API overview . 209
5.2 Acquiring raw video by means of local transport 211
5.3 Implementing the H264 video source plugin . 212
5.4 Implementing the VMS integration plugin . 213

6 Deployment 215
6.1 Installation . 215

6.1.1 Windows . 215
6.1.2 Linux . 217
6.1.3 Running Viinex 3.0 in foreground . 217
6.1.4 Setting the number of OS threads . 218

6.2 License key management . 219
6.2.1 Obtaining information on attached USB dongles 219
6.2.2 Obtaining the license document from a USB dongle 219
6.2.3 Obtaining information on PC hardware 220
6.2.4 Updating a license document on the USB dongle 220
6.2.5 Working with an “emulated” license storage 221
6.2.6 Batch mode . 222

References 223

6

https://viinex.com/

User’s Guide Viinex 3.0

This document is a reference manual to help application developers in configuring and using
Viinex 3.0.

If you have technical questions on Viinex 3.0, please contact the support team at Viinex
helpdesk: https://viinex.atlassian.net/servicedesk/customer/portal/1/

Compiled on April 12, 2021.

© 2017–2019, German Zhyvotnikov

© 2019–2021, Viinex Inc. https://viinex.com/

7

https://viinex.atlassian.net/servicedesk/customer/portal/1/
https://viinex.com/
https://viinex.com/

User’s Guide Viinex 3.0

1 Overview

Viinex 3.0 is a software development kit (SDK) for adding video surveillance and video man-
agement features to customer’s application. Viinex 3.0 implements functionality for acquiring
a video data from external devices (IP cameras and encoders, USB cameras), storing video in
the video archive, re-streaming video to clients in live mode as well as on demand.

In its interaction with applications, particularly in video data interchange, Viinex 3.0 sticks to
ISO-standardized media formats. When dealing with H.264 video codec, Viinex 3.0 provides
access to recorded video in such formats as MP4 [1], MPEG TS [2], and in form of raw H.264
stream which is also handy for a number of video processing applications. When it comes to
streaming video data to the client, Viinex 3.0 implements HLS specification [3], making video
playback possible on most of popular browsers, including Microsoft Edge and Apple Safari on
iOS. Internally, Viinex 3.0 stores and manages video archive as a sequence of MP4 files named
and arranged across subfolders, according to the video origin and timestamps, in a transparent
and obvious manner. This allows a user, in case of necessity, to operate on a video archive
by standard means, such as Windows built-in media player (for example if media containing
video archive is detached from the device where Viinex 3.0 was installed and brought to another
standard PC with no additional software).

Viinex 3.0 also implements WebRTC for video re-streaming from live video sources as well as
from a video archive. This makes Viinex 3.0 suitable for applications that require low-latency
live streaming, including PTZ controls.

There is also an extensible support for third-party video management systems in Viinex 3.0.
VMS integrations can be used to re-stream video from a 3rd party system in HTML5-compatible
manner, to explore the contents of an external video archive, to request for snapshots from
the integrated VMS, and to replicate a video archive data from that VMS to Viinex 3.0 native
video archive for further storage, streaming and processing.

For implementing custom logic like events processing, control video recording, video analytics
and so on, Viinex 3.0 has a builtin scripting capabilities. JavaScript language may be used to
extend the logic implemented by Viinex 3.0.

There are several video analytics modules integrated into Viinex 3.0, in particular these are:
vehicle licene plate recognition, freight container code recognition, face detection, – and the
programming interfaces are provided for simple, robust and efficient integration of other 3rd
party video analytics modules.

Viinex 3.0 is inherently embeddable, and does not inevitably bring its own end-user interface
to the product where it is used. Viinex 3.0 is completely separated from customer’s application
address space; there’s no need for linking your code with Viinex 3.0 client libraries (in fact
for Viinex 3.0 there are no such client libraries at all). All interaction with Viinex 3.0 is
performed via HTTP REST-like programming interface, which can be reached from wide range
of programming languages, from C/C++ to shell scripts.

While being a simple local service/daemon, Viinex 3.0 is capable of participating in distributed
systems for video management.

8

https://viinex.com/

User’s Guide Viinex 3.0

2 Configuration

Viinex 3.0 is started with one or more configuration files of simple JSON format, which sections’
semantics is described below. The configuration for Viinex 3.0 is a JSON document (or several
documents, see section 2.7) containing three optional keys: objects, links and license.
Configuration document syntax should be as follows:

{
"objects":
[

{
"type": "TYPE1",
"name": "NAME1",
"meta": JSON_VALUE_1,
"parameter1": "value1",
...
"parameterN1": "valueN1"

},
...
{

"type": "TYPE_M",
"name": "NAME_M",
"meta": JSON_VALUE_M,
"parameter1": "value1",
...
"parameterNM": "valueNM"

}
],
"links":
[

["NAME11", "NAME12"],
...
["NAME_k1", "NAME_k2"]

],
"license": "LICENSE_DOCUMENT_STRING"

}

An example for this file is shown below:

{
"objects":
[

{
"type": "rtsp",

9

https://viinex.com/

User’s Guide Viinex 3.0

"name": "cam1",
"meta": { "desc": "Backyard" },
"url": "rtsp://192.168.0.121:554/ISAPI/streaming/channels/101",
"auth": ["admin","12345"],
"transport": ["mcast","tcp"]

},
{

"type": "rtsp",
"name": "cam2",
"meta": { "desc": "Hall" },
"url": "rtsp://192.168.0.111:554/ISAPI/streaming/channels/101"

},
{

"type": "storage",
"name": "stor0",
"meta": { "desc": "Long-term storage", "volume": "/dev/sdb" },
"folder": "/home/viinex/videostorage",
"filesize": 16,
"limits": {

"max_size_gb": 10
}

},
{

"type": "webserver",
"name": "web0",
"port": 8880

},
{

"type": "alpr",
"name": "alpr0",
"country": "DEU",
"datapath": "/home/viinex/share/lib/vnxlpr/",
"workers": 1

}
],
"links":
[

[["cam1", "cam2"], "stor0"],
["web0", "alpr0"],
["web0", "stor0"]

],
"license": "rqZ821uWtcsxz....fYZE76ByAgmCZO"

}

2.1 General purpose objects

The objects section is a JSON array for elementary functionality units (“objects”, or module
instances) to be run when Viinex 3.0 is started. Each unit’s configuration is a JSON object
having two mandatory fields, type and name, one optional field meta, and a number of other
fields that can be mandatory or optional, depending on functional unit’s type.

10

https://viinex.com/

User’s Guide Viinex 3.0

In its turn, functional unit’s type, which is defined by the type parameter in unit’s configuration
object, determines the set of programming interfaces implemented by the unit, or, in other
words, the type of functionality which is exposed by the unit to other units created in Viinex 3.0
(via internal interfaces), and to the user (via HTTP API).

The name field of unit’s configuration object acts as a label for referring to this unit in links
section. The value of name property also affects the runtime behavior of the system, in partic-
ular it influences the URLs for addressing this unit via HTTP API, names of folders for storing
runtime data, etc.

The optional meta field may hold an arbitrary JSON value, including a JSON object. The
purpose of that field is to tag the Viinex 3.0 component with some information coming from
the application which uses Viinex 3.0. The latter reads the value from meta property of
configuration objects, and may report it via corresponding request in HTTP API, see section
3.1.2.

2.1.1 RTSP video source

Viinex 3.0 implements the RTSP [4] client for accessing H.264 live video streams [5, 6] sent by
IP video cameras or third party RTSP servers. Configuration object for RTSP video source in
Viinex 3.0 is denoted by unit type rtsp. Such configuration object should contain one manda-
tory field, url, and optional fields auth, transport, dynamic and rtpstats. An example for
RTSP video source configuration is given below:

{
"type": "rtsp",
"name": "cam1",
"url": "rtsp://192.168.0.121:554/ISAPI/streaming/channels/101",
"auth": ["admin","12345"],
"transport": ["tcp", "udp"],
"rtpstats": true,
"dynamic": true

}

or, another example, suitable with some IP cameras,

{
"type": "rtsp",
"name": "cam1",
"host": "192.168.0.121",
"port": 554,
"auth": ["admin","12345"]

}

The url field is a string containing RTSP URL to connect to. The URL can optionally contain
port information (in form of address:port).

An alternative to specifying a RTSP URL is setting the parameter host and, optionally, the
parameter port. Setting the host parameter alone is quivalent to setting the RTSP URL of
value rtsp://HOST:554/. Setting both the host and port parameters is equivalent to setting
the RTSP URL of value rtsp://HOST:PORT/. Such settings can be convenient with certain

11

https://viinex.com/

User’s Guide Viinex 3.0

equipment like IP cameras. In general case, however, setting just the host and port is not
sufficient to access an RTSP source, so the usage of the property url is recommended.

The auth property, if present, should be a pair of login and password, — the credentials to be
used for accessing the RTSP server. If auth element is not specified, Viinex 3.0 tries to access
specified RTSP URL without authentication.

The transport property, if present, should be a list of transport-layer protocols to be used
by RTP protocol when obtaining the video data. This list specifies client’s preferences with
respect to RTP transport. Format for this member is described in paragraph 2.4.1. performed.
If transport parameter is not specified, Viinex 3.0 RTSP client defaults to "transport":
["udp", "tcp"] which effectively enables UDP unicast and TCP (in that order of preference)
but disables UDP multicast.

The optional dynamic property, when set to true, instructs Viinex 3.0 that the video stream
from an RTSP source should only be acquired while video is requested by clients via

• an RTSP server (when an external client makes a connection to the RTSP server and
requests for video stream from this video source),

• a recording controller1 (while the video recording of this RTSP video source is requested),

• a Web server2 (for HLS streaming of video from this source, when an external HTTP
client requests for the HLS stream of this video source),

• a WebRTC server (when an external client makes a connection to WebRTC server and
requests for video stream form this video source),

• a video renderer (while this video source is rendered on the current layout).

If the dynamic property is set to true, Viinex 3.0 dynamically establishes the connection to
the RTSP video source when the one of the above activities starts, and disconnects from the
origin when all of the above activities end, until one of them is started again. In other words,
dynamic set to true saves the bandwidth, only requesting the video data from the origin when
it’s needed.

Otherwise, if dynamic is set to false, Viinex 3.0 continously acquires the video stream from
the specified video source, even if no other object in configuration currently requires that
stream. This is also the default behaviour, if the dynamic property is not set.

Another difference that makes the dynamic parameter is that with that set to true, the
respective RTSP video source does not require a dedicated Viinex 3.0 license for connecting
the videochannel. Instead, the license lease is acquired dynamically when the video stream
is requested by one (or several) clients, and released when that stream is no longer needed.
This makes it possible to add more video sources to the configuration then it is specified in
the license document, as long as it is known that no more than the licensed quantity of video
sources are ever requested simultaneously.

1Note that prerecording feature of the recording controller won’t work as expected with the dynamic video
sources, so it’s recommended that prerecording is set to 0 for such use cases.

2Because of the nature of HLS protocol, specifically the need for having some pre-buffered data prior to
HLS streaming can be started, it should be kept in mind that an HLS client will experience a significant delay
before it receives the first MPEG TS fragment of HLS stream from Viinex 3.0 dynamic video source. Some
HLS client implementations are not robust enough and give up prematurely, before said delay elapses and the
needed video data gets pre-buffered. If this is the case, an additinal effort might need to be taken at client’s
side to take this delay into account.

12

https://viinex.com/

User’s Guide Viinex 3.0

The rtpstats property, when set to the value true, instructs the RTSP video source to gather
statistics on received and lost RTP packets and payload units (which are NAL units in case
of H264 video payload). Default value for this property is false. The statistics gathered
in this way is periodically reported by rtsp object in the form of events of special topic
RtpStats (for more information on receiving events generated by Viinex 3.0 objects please
refer to section 3.22). More specifically, events generated by an RTSP video source object to
report RTP statistics have the form of

{
"topic": "RtpStats",
"timestamp": TIMESTAMP,
"origin": {

"type": "rtsp",
"name": STRING

},
"data":{

"since": TIMESTAMP,
"till": TIMESTAMP,
"packets": {

"received": INTEGER,
"lost": INTEGER

},
"frames": {

"received": INTEGER,
"lost": INTEGER

}
}

}

Here, the topic, timestamp and origin are the properties common for all events. The
origin.name contains the name of an object (RTSP video source) where the RTP statis-
tics data originates from. The properties data.since and data.till specify the time interval
when the statistics was gathered. The structures packets and frames contain the numbers of
received and lost RTP packets and NAL units, respectively.

Note that while the received figures represent the accurate number of datagrams received
and of NAL units completely reassembled by RTP parser, the lost values, when not equal to
0, should be treated as a lower estimate of the actual number of lost packets/frames3

No matter whether the rtpstats property is set to true or not, an RTSP video source uses
the mechanism of events to report on RTSP connection errors. In particular, the event of the
following form is generated if a RTSP connection failure occurs:

{
"topic": "RtspException",
"timestamp": TIMESTAMP,

3This is because Viinex 3.0 accounts for packets as lost if it clearly expects those packets and they are
necessary to reassemble a frame from an RTP stream, and such packets do not arrive. If a frame consists of one
RTP packet which is lost (or of several packets which are all lost), – Viinex 3.0 cannot infer how many frames
were lost and does not account for such packets and frames. Moreover, if Viinex 3.0 RTP parser sees that a
frame cannot be reassembled because of some portion of packets in frame was lost, – it does not attempt to
analyze which exact number of packets is lost for that frame, – but only accounts for the first portion of lost
RTP datagrams. This, however, gives a statistically appropriate estimate with network losses rate up to 5%.

13

https://viinex.com/

User’s Guide Viinex 3.0

"origin": {
"type": "rtsp",
"name": STRING

},
"data":{

"exception": STRING
}

}

The topic property is equal to the value RtspException for such events. Their data.exception
holds the textual description of an error occured.

2.1.2 ONVIF device

Viinex 3.0 supports ONVIF specification for acquiring H264 video streams and events from
ONVIF devices. Configuration object for ONVIF device in Viinex 3.0 is denoted by unit type
onvif. Such configuration should contain exactly one of two mutually exclusive mandatory
fields: url or host. The url parameter, if given, should contain the URL of onvif/de-
vice_serice SOAP service, as reported in xaddrs array in the result of ONVIF discovery call
described in section 3.3.5. As an alternative, the host parameter may be given instead of url.
The host property should contain an IP address of ONVIF device or a DNS name resolvable
to such IP address. Along with the host parameter, the optional port parameter may be given
to specify the TCP port which ONVIF Device service is listening on at the target device. If
the port property is not given, the default value 80 is assumed.

There is an optional parameter enable4 which is a JSON array and may hold from zero to
three elemetns — "video", "events", and/or "ptz". The purpose of this parameter is to
instruct the instance of current object to acquire or not acquire the data of respective type
from the ONVIF device, or to expose or not to expose the PTZ functionality via the API. By
default, if the enable parameter is omitted, it is assumed that both video and events should be
acquired (but PTZ is not used by default). For instance, if "enable":["video"] is specified,
only the video data will be obtained. This is sometimes important to disable the attempts to
subscribe for ONVIF events, if some specific camera does not implement this functionality of
misbehaves upon receiving subscription requests. Note that to use PTZ functionality, one has
to explicitly enable it, probably along with video and events, like this:

...
"enable": ["video","events","ptz"],
...

An optional rtpstats parameter may be specified to instruct an ONVIF device object to
gather network statistics while receiving video via RTSP/RTP protocol. The RTP statistics
is gathered when the property rtpstats is set to the value true in configuration, and is
reported by the onvif object as the stream of events which can be obtained from Viinex 3.0
via WebSocket interface described in section 3.22. The syntax and semantics of respective
events is discussed in section 2.1.1. The default value for rtpstats property is false.

Like with the RTSP video source (see section 2.1.1), the RTSP-related errors are reported
using the events mechanism, irrelevant to the value of property rtpstats.

4Formerly this parameter had the name acquire. The name acquire is still valid for backward compatibility,
but is deprecated.

14

https://viinex.com/

User’s Guide Viinex 3.0

There can also be the dynamic parameter specified for the configuration of the ONVIF device
object. The meaning of this parameter exactly matches that for the RTSP video source, as
described in section 2.1.1. Note that dynamic parameter for ONVIF device object only affects
the video streaming. Events and PTZ control, if enabled in configuration, are always enabled.

Another three optional parameters which can be specified with both url and host variants
are auth, transport and profile. The auth element, if present, should be a pair of login and
password, — the credentials to be used for accessing ONVIF API via SOAP and later the RTSP
video endpoint. The transport property, if present, should contain a list of preferred RTP
transport protocols for receiving video data. The syntax for auth and transport parameters is
the same as for that parameters in RTSP video source configuration described in section 2.1.1
and 2.4.1.

Last but not least, there is an optional profile parameter which specifies the “token” (unique
identifier within the device) of the profile to be used. If this parameter is not set, Viinex 3.0
automatically selects the first5 available profile on the device that is set up for H.264 streaming.

Two examples for “ONVIF device” object’s configuration is given below, for URL variant:

{
"type": "onvif",
"name": "cam1",
"url": "http://192.168.0.111/onvif/device_service",
"auth": ["admin", "12345"],
"acquire": ["video", "events"],
"profile": "Profile_2",
"transport": ["tcp"],
"dynamic": false

}

and for the host/port variant, with the very minimum set of parameters required:

{
"type": "onvif",
"name": "cam1",
"host": "192.168.0.111"

}

“ONVIF device” module implements two logical interfaces within Viinex: the interface of live
video source, and the interface of event source. The latter can be used for instance to control
the video recording process via rules, see section 2.1.9.

The implementation of event source interface of “ONVIF device” module in Viinex 3.0 does
not require any settings. Viinex 3.0 automatically creates pull-point subscription and begins
to acquire all events produced by ONVIF device, – right after an instance of the module is
started.

2.1.3 H264 video source plugin

In order to provide applicaitons with capability to make arbitrary video streams available as live
video sources in Viinex 3.0, the latter supports the functionality of so-called h264sourceplugin.

5The order is actually defined by the device. Viinex 3.0 takes the first appropriate profile that is described
in the result to GetProfiles ONVIF call [9].

15

https://viinex.com/

User’s Guide Viinex 3.0

The idea behind that functionality is that an application can provide a shared library that
implements certain simple API, which is described in section 5.3, calls the specified factory
method in that library, which should return a specific implementation of a video source6. That
video source is then used by Viinex 3.0 just like any other video source.

The configuration for the H264 live video source plugin should look as follows:

{
"type": "h264sourceplugin",
"name": STRING,
"dynamic": BOOLEAN,
"library": STRING,
"factory": STRING,
"init": JSON

}

where property type should take the value of “h264sourceplugin”; value of property name
identifies the video source in Viinex 3.0 configuration; and the property dynamic means exactly
the same as it does for RTSP video source or an ONVIF device: it means that a video stream
would only be consumed by Viinex 3.0 while that stream is requested by someone.

The properties library, factory and init are specific to the plugin though. The library
property specifies which shared library (a .dll “dynamically linked library” on Windows or a
.so “shared object” on Linux) should be loaded by Viinex 3.0 in order to instantiate the plugin.
In its turn, the factory property is the symbol inside of the loaded dynamic library which is
looked for by Viinex 3.0 and, once found, is called, in order to instantiate the pluggable video
source.

The init property serves as the means to pass an initialization information to the plugin. It
could be an arbitrary JSON value, but most convenient use of it is an object. That value
is serialized into string by Viinex 3.0 prior to the calling of factory function inside of the
library. The stringified init value is actually passed by Viinex 3.0 as an argument to the
factory call. The plugin implementation can parse that string to JSON value and interpret
this value to initialize the behavior of the newly instantiated pluggable video source.

The API for implementing such plugins is published by Viinex Inc. under MIT license and is
available at https://github.com/viinex/vnxvideo. That repository also contains an exam-
ple implementation of the video source plugin, namely – a plugin the read video track from a
media file using the avformat library (a part of FFmpeg project). Respective source code re-
sides at https://github.com/viinex/vnxvideo/blob/master/src/FileVideoSource.cpp.
The vnxvideo library is a part of Viinex 3.0, and therefore it is present with every Viinex 3.0
installation. The FileVideoSource.cpp is compiled into the vnxvideo library, which makes
the file video source plugin available. The configuration of such plugin would look like:

{
"type": "h264sourceplugin",
"name" : "cam2",
"library" : "vnxvideo.dll",
"factory" : "create_media_file_live_source",
"init" : {

6To be precise, the vnxvideo_h264_source_t type and the C++ interface IH264VideoSource represent a
H264 video source co-located with event source, so that a plugin can produce events synchronized with a video
stream. For more details refer to section 5.3.

16

https://github.com/viinex/vnxvideo
https://github.com/viinex/vnxvideo/blob/master/src/FileVideoSource.cpp
https://viinex.com/

User’s Guide Viinex 3.0

"file": "D:\\temp\\videofile.mp4"
}

}

In this example, the plugin implementation is loaded from vnxvideo.dll, and the name of
plugin factory function is create_media_file_live_source (compare to https://github.
com/viinex/vnxvideo/blob/9acd9a06/src/FileVideoSource.cpp#L334). The init parameter in
this case is a JSON object containing one property file, for the path to media file, which is
deserialized and used in the plugin implementation, as can be seen in the source file referenced
above.

2.1.4 Raw video source

Viinex 3.0 is capable of dealing with raw video sources via programming interface provided by
the operating system. The object type for raw video source in Viinex 3.0 is rawvideo. An
example for configuration section for this kind of objects is given below:

{
"type": "rawvideo",
"name": "raw0",
"capture": {

"type": "dshow",
"address": "\\\\?\\usb#vid_045e&pid_0779&mi_00#7&b53bc93&0&0000\

#{65e8773d-8f56-11d0-a3b9-00a0c9223196}\\global",
"mode": {

"pin":"Capture",
"colorspace":"YUY2",
"framerate":10.0,
"limit_framerate": true,
"size":[1280,720],
"exposure":"auto"

}
},
"analytics": ["basic"],
"overlay": [

{
"left": 50,
"top": 100,
"colorkey": [255, 255, 255],
"initial": "C:/temp/overlay.html"

},
{

"left": 350,
"top": 200,
"colorkey": [255, 255, 255]

}
],
"encoder": {

"type": "cpu",
"quality": "small_size",
"profile": "high",

17

https://github.com/viinex/vnxvideo/blob/9acd9a06/src/FileVideoSource.cpp#L334
https://github.com/viinex/vnxvideo/blob/9acd9a06/src/FileVideoSource.cpp#L334
https://viinex.com/

User’s Guide Viinex 3.0

"preset": "ultrafast"
}

}

There are two mandatory subsections of configuraiton object for raw video source – capture
and encoder, – and two optional sections, analytics and overlay.

Capture parameters

The capture subsection describes the origin where the raw video data should be taken from:

"capture": {
"type": "dshow" | "v4l" | "localtransport",
"address": STRING |
"index": INT,
"mode": OBJECT

}

The type property of capture subsection is a string which can take one of three values:
"dshow" for DirectShow devices on Windows, "v4l" for Video for Linux 2 devices on Linux, or
"localtransport" for raw video retreival from other processes using Viinex 3.0 local transport
mechanism.

The address property should be a string value of address (absolute path) of the device to
connect to. On Windows, for "dshow" capture type, the format of address depends on device
driver, and it typically similar to one of the following:

\\?\usb#vid_045e&pid_0779&mi_00#7&b53bc93&0&0000
#{65e8773d-8f56-11d0-a3b9-00a0c9223196}\global,

\\?\pci#ven_1131&dev_7133&subsys_52010000&rev_f0#5&2b491bae&0&0000f0#
{65e8773d-8f56-11d0-a3b9-00a0c9223196}\{bbefb6c7-2fc4-4139-bb8b-a58bba724083}

but may completely differ with some vendors’ drivers. Note that backslashes ‘∖’ within the path
should be escaped (i.e. each backslash should be doubled) when written to JSON document.
On Linux, for "v4l" capture type, video device address typically looks like

/dev/video0,
/dev/video1,

and so on. The address of a device can be found out by means of raw video device discovery
call to Viinex 3.0 API documented in section 3.3.7.

Alternatively, for dshow or v4l capture types, instead of address, an index may be specified.
index is an integer interpreted as an ordinal zero-based number of the device that Viinex 3.0
should connect to, an ordinal with respect to the list of available raw video devices, as returned
in response to discovery call described in section 3.3.7. The option to specify a device index
instead of an address is useful for creating a pre-defined configuration which does not depend
on absolute path to device, because on Windows the path contains vendor and model (and
sometimes device serial number) information and therefore cannot be just copied across servers
without additional adjustment. Specifying an index instead of address allows for simple

18

https://viinex.com/

User’s Guide Viinex 3.0

copying of configuration files. On the other hand, the order in which devices are listed by the
operating system, is not defined, therefore specifying an address of the device is the only way
to ensure that the device of specific vendor and model, plugged into specific USB or PCI slot,
will get the specific identifier (name) in Viinex 3.0.

The mode property of capture structure should have the form described in section 2.4.3.
mode property is optional. If not specified, Viinex 3.0 automatically uses the first element of
capabilities array reported for corresponding device by raw video device discovery call, as
described in section 3.3.7. However it is recommended that mode is explicitly specified in the
configuration, because this is the only way to obtain video with predictable resolution. There
are also some concerns about colorspace to be selected. In order to perform video encoding,
Viinex 3.0 needs to have video in YUV colorspace in planar format with 4:2:0 subsampling [14].
This is connected with video encoder implementation. That is, an “internal” raw video format
for Viinex 3.0 is “I420”. Viinex 3.0 performs the conversion to required raw video format
automatically, if mismatching format is chosen in video source configuration. However such
conversion takes additional CPU resources, especially if what is converted is not only pixel
layout in memory or subsampling (“format”), but also the colorspace itself (i.e. if original
colorspace is RGB). It is strongly recommended that selected mode instructs the device driver
to operate with video in YUV colorspace, if such capability is available.

A special case of the capture type is "localtransport". This type serves for the purpose
of getting raw video from an external process, when the frames are published by means of
Viinex 3.0 local transport mechanism. That is, some other software component on the same
host may produce raw video frames and use the local transport server component from the
vnxvideo library to publish these video frames. Viinex 3.0 instance, in its turn, may use a
local transport client component to connect to a respective local transport server, get raw
video frames, and further treat them as if they came from a video camera.

When the capture.type property is set to "localtransport", the capture.address prop-
erty should be specified. The address should contain an address of the local transport
“rendezvous point” – that’s the string value passed to vnxvideo_local_client_create and
vnxvideo_local_server_create functions. The parameters index and mode are ignored for
the capture of type localtransport.

Encoder

Video encoder is always created and associated with raw video source by Viinex 3.0: raw
video is never transmitted over network or written to video storage; it is always encoded
first. The optional encoder subsection of the raw video source configuration is described in
paragraph 2.4.4.

Analytics

The analytics section defines the set of video detectors (analytics) applied to the video
acquired from the souce being configured. The analytics value should be an array of JSON
objects, each defining the settings for an instance of video detector, or an array of strings which
is a simplified way of creating the detector of specific type with default settings.

Recognized analytics type is basic; it instructs Viinex 3.0 to instantiate the algorithms for
detection of motion on the video, as well as situations of image quality degradation. The
settings section for basic analytics have the following syntax:

19

https://viinex.com/

User’s Guide Viinex 3.0

...
"analytics": [

{
"type": "basic",
"roi": [LEFT, TOP, RIGHT, BOTTOM],
"framerate": INTEGER,
"too_bright": BOOLEAN,
"too_dark": BOOLEAN,
"too_blurry": BOOLEAN,
"motion": FLOAT,
"scene_change": BOOLEAN

},
...

]

All parameters except the type are optional. The roi specifies the rectangular region of interest
for the algorithms (in relative units in range [0.0, 1.0]. The default roi is the whole image.
The framerate parameter determines the frame rate at which a data acquired from the source
should be processed by the analytics. For basic detectors, the default and recommended value
for framerate is 5. Valid range for this parameter is [2, 30]. Note that one should not set the
framerate value of the analytics module higher than the effective framerate of the source (after
it is limited), because otherwise motion detector may work worse than expected, – but it’s safe
to set it to lower values to save CPU resources.

The boolean values too_bright, too_dark, too_blurry, scene_change, define whether cor-
responding detectors should be activated within this instance of analytics module. If the value
too_dark is set to false, the detector of insufficient lighting conditions is set to be inactive, and
corresponding events are never produced by this analytics instance. The default value for all of
the mentioned parameters is true. For motion detector, the floating-point motion parameter
defines the sensitivity for that detector, with the default value of 0.5, and valid range [0.0, 1.0].
The value "motion": 0.0 effectively turns the motion detector off.

There can be several instances of the analytics module defined for one rawvideo object. For
that, the analytics array of the configuration should have more than one element in it. This
can be useful defining a motion detector on several ROIs with different sensitivity in each.

There is also a simplified syntax for creating the analytics module, – simply put the string
type of the analytics module instead of the JSON object with its settings:

...
"analytics": ["basic"],

...

is equivalent to creating the analytics module of type basic with all parameters set to their
default values.

The effect of creation of an analytics module instance with the raw video source is that such
video source exposes an interface of an event source and can be used in rules (to turn the video
recording on and off). Its events can also be acquired via WebSocket interface of Viinex 3.0.
The syntax and semantics of events generated by rawvideo object with video detectors turned
on matches that of events acquired from ONVIF devices, see sections 2.1.9, 3.22 for more
details.

20

https://viinex.com/

User’s Guide Viinex 3.0

Overlay

The overlay subsection is optional. If present, it enables the overlay functionality for the
raw video source in Viinex 3.0. The syntax and meaning of the properties under the overlay
configuration section are given in paragraph 2.4.5 of this document.

2.1.5 Video renderer

Video renderer is the component which performs video decoding, video rendering and further
video encoding, to act as a separate video source for the clients connecting to the Viinex 3.0
instance. It can be used for multiple purposes, for instance to provide mobile clients with
ability to view multiple live video streams (by means of performing video decoding on the
server side). Another example is to embed the subtitles in the images on the video stream
coming from an IP camera.

An example configuration for the video renderer component could look like

{
"type": "renderer",
"name": "rend0",
"refresh_rate": 30,
"share": true,
"transforms": [[0,

{
"type": "projective",
"matrix": [

0.6684, -1.7117, -0.5508,
0.0738, 1.6030, 0.1292,
0.0198, 0.2072, 1

]
}

], ...],
"layout": {

"size": [1280, 960],
"background": "c:\\temp\\background.jpg",
"nosignal": "c:\\temp\\nosignal.jpg",
"viewports": [

{
"input": 0,
"dst": [0.1,0.1,0.7,0.7]

},
{

"input": 1,
"border": [0,0,255],
"dst": [0.6,0.05,0.95,0.4]

},
{

"input": 2,
"border": [0,255,0],
"dst": [0.6,0.45,0.95,0.9]

},

21

https://viinex.com/

User’s Guide Viinex 3.0

{
"border": [0,255,0],
"dst": [0.1,0.75,0.35,0.95]

},
{

"input": 2,
"border": [255,0,0],
"src": [0.1,0.3,0.6,0.6],
"dst": [0.05,0.45,0.55,0.9]

}
]

},
"overlay": [

{
"left": 50,
"top": 100,
"colorkey": [128, 128, 128],
"initial": "C:/temp/qq.html"

},
{

"left": 350,
"top": 400,
"colorkey": [128, 128, 128]

}
],
"encoder": {

"type": "cpu",
"quality": "small_size",
"profile": "high",
"preset": "ultrafast",
"dynamic": true

}
}.

The type of the video renderer component is renderer. There can be four parameters in the
video renderer configuration, besides the common required type and name parameters: these
are refresh_rate, layout, encoder and overlay. All of that parameters are optional and
can be left unspecified in the configuration.

As with other components configuration, the logical connections between the video renderer
and other objects are specified in the links section of configuration.

The refresh_rate should be an integer value and defines the maximum frequency of tar-
get image update. The default value for this parameter is 30. The increase of that value
may improve the visual appearance of moving objects on the resulting video stream, but this
comes at the price of increased usage of the CPU and the increased network bandwidth when
broadcasting the resulting video stream to remote clients.

The layout section of the video renderer configuration should have the form of

"layout": LAYOUT,

where LAYOUT is the JSON object which form is described in section 2.4.8.

22

https://viinex.com/

User’s Guide Viinex 3.0

The overlay parameter is optional and defines the overlays rendered over the resulting video.
The syntax and semantics of this section is described in 2.4.5.

The optional parameter share specifies whether the rendering should be performed to a shared
memory region and made available to other processes on the same host using the local trans-
port mechanism, see section 5.2 for more detail. Note that in order to use this option, a system
privilege to create the segment of shared memory (memory mapped file) is required on Win-
dows. This privilege should either be explicitly granted to the user, or Viinex 3.0 may be run
with an “evevated” privileges (“Run as administrator”). When running as a service, Viinex 3.0
uses the SYSTEM account by default, which already has the required privileges to create a
shared memory segment.

The optional encoder subsection of the configuration defines the video encoder parameters
applied to the video encoder to compress the resulting video stream from this video renderer
instance. The syntax and semantics of this section is described in 2.4.4.

Before the input video streams are rendered on the resulting surface, a geometry transforma-
tions may be applied to them. For that, an optional property transforms may be specified.
The value of that property should be a JSON array of pairs (each encoded as an array of 2
elements), first element of which indicates an index of the input video source, while the second
should be a JSON object describing the transformation that needs to be applied to that input
video source. Currently only the projective transformation is supported, which, however, is
the superclass for affine transformations, shifts, rotations, shears and scaling. The projective
transformation is described with a JSON object having two mandatory fields: the type field
which should have the value of string "projective", and the matrix field which should have
the value of JSON array of exactly 9 floating-point numbers. That array should represent the
matrix for the projective transformation that needs to be applied. For more information on
evaluating the matrix of a projective transformation please contact Viinex support team.

Note that geometry transformations, if any, are applied prior to rendering of viewports on a
resulting image. The transformation for an input channel is applied once, no matter how many
viewports that input channel is rendered to. Also, the coordinates that might be specified in
the src property of the layout configuration represent the coordinates on an image after a
geometry transformation was applied to it.

Video renderer implements a number of interfaces for interaction with other components im-
plemented in Viinex 3.0. Specifically, these are: encoded video source, snapshot source, overlay
control, and layout control. Mentioned interfaces are used when the corresponding links be-
tween the video renderer instance and other components are established. For more information
see section 2.5.

2.1.6 Stream switch

Stream switch provides an efficient way to multiplex several video sources into one, giving an
application using Viinex 3.0 the means for controlling which one of the input video streams
should appear at the output. Stream switch resembles the video renderer in that the same goal
can be achieved by the latter: one could just configure the video renderer to have the same input
video sources as the stream switch, and control the layout of the video renderer so that only
one of the input streams is displayed on the “full screen”. The important difference between this
approach and the approach taken in the stream switch implementation is that video renderer
decodes the video streams that need to be displayed, and then encodes the resulting video back.
This decoding and encoding steps typically do consume a lot of computational resources. In
contrast, the stream switch object simply switches between encoded video streams, it does not

23

https://viinex.com/

User’s Guide Viinex 3.0

have to perform the decoding and encoding, – thus the switching between video streams costs
nothing to the application.

The configuration of the stream switch is minimalistic: it should have the following form:

{
"type": "streamswitch",
"name": STRING,
"default": INT

}

The type of the object for stream switch is streamswitch.

Just like for the video renderer object, the association between the input video sources and
the stream switch is managed in the links section of the configuration. The sorted list of
video sources that are linked to a stream switch can be obtained from the latter via HTTP
API call. There is also another HTTP call – a control command – which allows an application
to actually switch between input video sources. An argument to that control command is a
zero-based index of the requested video source in a sorted list of input video sources linked
with that instance of stream switch. For more information see section 3.12.

The parameter default of the configuration specifies a zero-based index of the video source
that the stream switch should pass through upon startup, before the first control command is
given.

As already mentioned, the stream switch acts as a video stream consumer and should be linked
with input video sources in the links section of the configuration. On the other hand, the
stream switch is a video source itself – producting the output video stream – and hence in can
be used in all contexts where video sources are used. In particular, it can be streamed as a
live video source via RTSP server, written to a video archive, and so on.

2.1.7 Video archive

Viinex 3.0 implements the functionality for writing, storing and accessing H.264 video data
acquired from external video sources.

Configuration object for video archive in Viinex 3.0 is denoted by object type storage. Such
configuration object should contain three mandatory fields: folder, filesize and limits.
An example for video archive configuration is given below:

{
"type": "storage",
"name": "stor0",
"folder": "/var/spool/viinex/videostorage",
"filesize": 16,
"limits": {

"max_size_gb": 500,
"max_depth_abs_hours": 480,
"max_depth_rel_hours": 240,
"keep_free_percents": 5

},
"allow_removal": false

}

24

https://viinex.com/

User’s Guide Viinex 3.0

The folder element specifies the locally mounted filesystem and path where video data is
stored and maintained.

The element filesize specifies an approximate limit for stored video fragments’ size, in
Megabytes. This parameter affects performance and memory usage in various scenarios; for
more details contact Viinex technical support.

The element limits is JSON object containing four optional fields:

• max_size_gb,

• max_depth_abs_hours,

• max_depth_rel_hours and

• keep_free_percents.

The parameters listed above affect the behavior of video archive with respect to maintaining
the “ring” of video records. Video archive automatically removes older video files as new ones
are recorded, in order to enforce the limits on disk space which is used by video data. There are
four parameters allowed under limits section of video archive configuration to specify various
strategies for that purpose. All of mentioned parameters are optional; if none of them is given
or limits section is absent, then no limits on stored video data size are enforced. When
multiple parameters under limits section are present, they all act simultaneously (which
leads to enforcing the most strict limit, as they are evaluated in runtime, by the moment of
evaluation). The semantics of parameters under limits section is as follows:

max_size_gb parameter sets the limit for total disk space utilized by video storage. To enforce
this limit, the video storage iteratively removes the oldest video record, until total disk space
used by video data becomes less than the value specified by this parameter. This is the most
widely used parameter under limits section.

max_depth_abs_hours parameter sets the temporal limit with respect to system clock. All
video records older than the value of this parameter are removed. The maximum video record’s
age is set as a number of hours (integer). Note that this limit acts even if no new data is written
to video storage. It is useful mainly to enforce some limits that might be imposed by legislator
requirements (for instance those connected with privacy policies).

max_depth_rel_hours parameter, in contrast to the previous parameter, sets the temporal
limit (in hours) with respect to the most recent video data which appears in the video archive.
This option helps keeping required “recording depth”, and is especially useful in scenarios
where video data replication is performed, so measuring “recording depth” from system clock
is inappropriate. Note that the time of the “most recent” data is computed over all video
sources maintained by the instance of video storage, so if at some point a video data from
many sources is stored in the video archive, but the new data originating from only one source
is appended to the archive, — still, oldest data to be removed would be selected over all sources
in order to enforce this limit. (This is a common rule anyway: one instance of video storage
always removes video data from all sources; removed video is the one which is older than some
single (that is — same for all stored video sources) point in time).

keep_free_percents parameter helps preserving the Viinex 3.0 from completely using up all
available disk space, which may render the system unusable in some situations. The value for
this parameter is specified in percents. If it is given, the video archive instance removes oldest
video records, until at least specified fraction of disk space is freed. The actual space to be
freed by Viinex 3.0 on a volume is computed taking into account the disk space already used by

25

https://viinex.com/

User’s Guide Viinex 3.0

other applications. That is, if total volume size is 𝑇 , and disk space used by other applications
is 𝑆, — then the disk space ever available to Viinex 3.0 is 𝑇 −𝑆, and the actual space specified
in keep_free_percents is computed in runtime from 𝑇 − 𝑆 rather than 𝑇 . The actual figure
is re-estimated periodically, which allows Viinex 3.0 video storage to play nicely with other
applications that can be actively using and freeing space on the same volume.

The allow_removal boolean property indicates whether this instance of storage would allow
external applications to arbitrarily remove data upon API request. Respective API call is
described in section 3.5.7. If not specified, this option is set to false which means that
recordings are only removed from storage automatically in order to enforce specified limits;
specifically, – only the oldest data is always removed, while the most recent data is preserved.
The DELETE API call 3.5.7 is disabled for such instances of video storage. If the allow_removal
property is set to true, the DELETE API call is enabled.

2.1.8 Recording controller

Viinex 3.0 implements the functionality to control the process of recording a video data to the
video archive. For that, the recording controller object is employed.

Recording controller represents a logical “switch” that has two positions: “recording started”
and “recording stopped”. The controller, despite its name, does not itself take a decision to
change the position of that switch, but rather manages data streams, based on position of
the switch. Decisions to start and stop the recording are taken by either rules, or an external
software (via HTTP remote procedure calls to the recording controller, in the latter case). For
more information see sections 2.1.9, 3.6.

An instance of recording contoller is denoted in Viinex 3.0 configuration by object type recctl.
Video sources and the video archive associated with the recording controller are specified in
links section of the configuration. An example of configuration object for recording controller
is given below:

{
"type": "recctl",
"name": "rec0",
"prerecord": 5,
"postrecord": 3

}

Two parameters need to be set for the recording controller. The prerecord field defines the
minimum length of so called pre-recording buffer, in seconds. Pre-recording buffer is a buffer in
RAM, and its content is permanently (as new video data is received) renewed to hold at least
specified number of seconds of most recent video. (The actual buffer length may be greater
than specified because of the need for holding all preceding frames of a first GOP intersecting
with specified time interval). When the command to start the recording arrives, the recording
controller first sends a content of the pre-recording buffer to the storage, and then continues
to pass to the storage the live video data as it appears. This effectively allows to record a
fragment of video preceding the moment when the command for the recording has arrived.

NB! The prerecord parameter is ignored for the dynamic video sources,
i.e. for the RTSP video sources and ONVIF devices with the parameter
dynamic set to true.

26

https://viinex.com/

User’s Guide Viinex 3.0

Similarly, the postrecord field extends the recording for a specified number of seconds past
the receiving of a command to stop writing. In contrast with pre-recording, post-recording
feature does not require a buffer in RAM.

Note that prerecord and postrecord parameters are applied to all video sources associated
with an instance of recording controller. Same is true for the video recording logic itself: one
instance of recording controller has one logical “switch” to turn the recording on and off, and
that “switch” affects the recording of all video sources associated with that controller. This
allows for grouping of video cameras into scenes, if there is a demand to start and stop the
recording simultaneously over all cameras within a scene.

2.1.9 Rules

As an alternative for an external management of video recording via HTTP remote procedure
calls to the recording controller, Viinex 3.0 offers the feature for automatic recording of video
streams from a group of video sources as a reaction to some event. The origin of such events
is typically a video detector working on an IP video camera, or a digital input contact.

The events acquired from ONVIF devices are processed by an object of type rule. It filters
out irrelevant events, interprets the relevant ones, and issues corresponding commands to the
recording controller.

An example for configuration section of a rule object is given below:

{
"type": "rule",
"name": "rule1",
"filter": ["MotionAlarm"]

}

Note that the sources for acquiring events, and the recording controller which should be man-
aged by the instance of rule object, are configured in links section of the configuration
document. The only property specific to the rule object in the above configuration section is
the filter variable. It should contain a list of event topics, which should be interpreted by
the rule as signals to start or stop a video recording.

Here are the names of event topics recognized by Viinex 3.0:

MotionAlarm
SignalLoss
GlobalSceneChange
ImageTooDark
ImageTooBright
ImageTooBlurry
DigitalInput

These names correspond to the names of event topics in ONVIF Imaging [10] and Device IO [11]
Services Specifications7. MotionAlarm events are issued by ONVIF devices as a reaction to

7Strictly speaking, the event topics in mentioned specifications have the form similar to
tns1:VideoSource/MotionAlarm, tns1:Device/Trigger/DigitalInput, and so on. For simplicity, the repet-
itive parts tns1:VideoSource/ and tns1:Device/Trigger/ should be stripped out when corresponding event
topics are specified in Viinex 3.0 configuration.

27

https://viinex.com/

User’s Guide Viinex 3.0

motion detection. SignalLoss is an event specific for analog-to-IP video converters; it means
that the signal from an analog CCTV camera or from other analog source was lost. Events
GlobalSceneChange and ImageToo{Dark|Bright|Blurry} are issued by so-called “service de-
tectors” and represent the detected fact of image quality degradation or image scene change
which may happen if the camera was shifted, rotated or occluded. The DigitalInput event
is raised by an ONVIF device when it detects a state change on its GPIO contacts.

The rule object is capable of handling events of multiple types originating from multiple
sources. Each pair of an event topic and an event source is distinguished as a separate “alarm
reason”. For example, a MotionAlarm from camera1 and MotionAlarm from camera2 are
obviously different alarm reasons. An event may raise an alarm or withdraw it (for instance if
a motion detector reports a presence or an absence of activity in the scene). The rule object
keeps track for active alarms and their reasons. It issues a command to begin video recording
if there are some active alarms, and stops recording when there are none (i.e. all alarms were
withdrawn by corresponding events).

2.1.10 Replication source

Viinex 3.0 implements replication functionality split into two parts: replication source and
replication sink. Replication source is responsible for sending video data from Viinex 3.0
instance where that data is produced/collected, to some other instance where replication sink
should be deployed. Replication source connects to its peer replication sink, negotiates with it
on what video data is required to be transmitted, and sends this data. Then these steps are
repeated. When it turns out that no new data is to be transmitted from replication source to
replication sink, the source pauses its activity for some amount of time. The replication source
plays active role in data replication.

Replication source is specified in configuration document by an object of type replsrc. An
example for configuration of the configuration of replication source is given below:

{
"type": "replsrc",
"name": "replsrc0",
"sink": "http://10.4.7.12:8881/v1/svc/replsink1",
"key": "agentA",
"secret": "foobarsecret42"

}

The only parameters to configure in this section define the URL and credentials for accessing
the replication sink which the video data should be transferred to. Corresponding credentials
(in the above example API key “agentA” with secret “foobarsecret42”) should be known by web
server where replication sink is exposed, and corresponding API key should be known by that
replication sink; see section 2.1.11 for more details.

Other required parameter for replication source is the video archive instance, to which this
replication source is attached and where the video data is taken from. Corresponding video
archive is set in links section of configuration document. If video archive is not set for
replication source, Viinex 3.0 gives an error and refuses to start.

Note that replication source treats equally all video channels present in video archive this
replication source is attached to. It tries to send video data from all video channels accessible
within connected video archive to its peer replication sink. If some of video channels need not

28

https://viinex.com/

User’s Guide Viinex 3.0

to be replicated, they should be written to other video archive, which is not connected with a
replication source.

2.1.11 Replication sink

Replication sink is Viinex 3.0 component that is responsible for accepting the video data from
replication sources and storing it into video archive. One replication sink is capable of dealing
with multiple replication sources, making it possible to gather video from multiple video archive
into one archive on a separate host.

Replication source is denoted in configuration document by an object of type replsink. An
example of replication sink configuration is given below:

{
"type": "replsink",
"name": "replsink1",
"mode": "rolling" | "managed",
"workers": 8,
"translation": [

["agentA", "site1."],
["agentB", "site2."]

]
}

Two parameters need to be set up for replication sink: mode and translation. The mode
parameter should take one of two values, rolling or managed. The fundamental difference
between these two modes is that rolling replication mode is an automatic replication that is
performed on behalf of a replication source at some remote instance of Viinex 3.0, and all
data that is available to the replication source is copied to the replication sink. The managed
replication mode, in contrast, means that the whole replication process is controlled via API,
see 3.7. The source for replication could be an RTSP source or a channel in some 3rd party
VMS (see section 2.1.13).

The configuration of replication sink object is below discussed for these two modes.

Rolling replication

The rolling mode means that replication sources attached to this replication sink will send the
new video data as soon as it appears in their video archives, not awaiting for explicit orders or
requests from replication sink. The translation parameter is an array of string pairs, where
first element of each pair references an API key of HTTP client, where the second key sets
the prefix for camera names. In the whole, it works as follows. When a replication source
connects to a replication sink, it always uses some authentication credentials, that is an API
key and a secret. That API key is, among other purposes, used by replication sink to lookup
the translation map and determine an object prefix — a string which is prefixed to camera
name reported by replication source, to be stored in video archive local to replication sink.

Given the above example, if a replication source connects to the replication sink using API
key agentA, and sends the video data from its local cameras with names cam1 and cam2, these
video sources will receive the names site1.cam1 and site1.cam2 in the video archive that
is attached to replication sink. If, for instance, another replication source uploads the data

29

https://viinex.com/

User’s Guide Viinex 3.0

from cam1 and cam2 too, but acts on behalf agentB, — that video source will receive names
site2.cam1 and site2.cam2 at replication sink’s side. This mechanism makes it possible to
keep object names at replication sources’ side simple and typical yet not unique across all
replication sources (such as cam1, cam2), while preventing the data from different cameras
from mixing at replication sink side.

It’s up to user who performs Viinex 3.0 deployment to choose camera names and prefixes for
replication. If camera names are chosen to be unique across all replication sources, the prefixes
may be left blank in translation section of replication sink configuration. This would provide
uniform naming for video sources in all video archives (original and replicated).

At the same time, even if prefixes are left blank, it is required that all the API keys that are
used by replication sources to communicate with replication sink, are listed in translation
section of replication sink configuration. The presence of corresponding API keys in auth
section of webserver configuration (see section 2.1.19 is necessary but not sufficient for the
replication sink to accept the data from a replication source.

The workers property is ignored by a replication sink in rolling mode.

To accomplish replication sink configuration, two links should be established in links section
of configuration document: one link with a video archive, and another link with a web server
where the replication sink should be exposed. For security reasons, one may decide to create
a dedicated web server for that purpose, assigning a unique TCP port for that, especially if
the replication sink is exposed on the Internet to accept video data from remote Viinex 3.0
instances. Doing so is a normal use case; corresponding configuration example is provided in
stock configuration files coming with Viinex 3.0 distribution for Windows.

Managed replication

Managed replication sink is actually an agent which accepts replication tasks via API descibed
in section 3.7, and executes those tasks. Each replication task for managed replication sink
represents the instructions on where to take video data from, which time interval that data
should be assigned to, which channel in video archive the data should be placed into, and so
on.

It is important that replication tasks take their time and computational resources and network
bandwidth to execute. Therefore they are, in general case, not executed all at once, in parallel.
Managed replication sink introduces the notion of workers, which can be seen as independent
threads of execution of replication tasks. Each replication task is executed by a dedicated
worker. While a worker executes some replication task, it is busy and cannot execute any
other task. After a replication task is completed (or failed), the worker which executed that
task returns to the pool of free workers. The new replication tasks are placed in a queue; in
their turn, the free workers take the tasks from that queue to execute them.

The property workers in replication sink configuration specifies the number of workers for this
replication sink instance. This value should be agreed with the content of Viinex 3.0 license
document which is provided by Viinex licensor. There is a separate license position in the
license document which specifies the maximum allowed number of replication sink workers.
The actual number of workers is specified by the value workers in Viinex 3.0 configuration,
but it should not exceed the number allowed in the license document, otherwise Viinex 3.0
won’t be able to start such configuration cluster.

Since the destination for video data replication (the channel within the video archive) is gov-
erned by replication tasks, the translation property is ignored by replication sink in managed

30

https://viinex.com/

User’s Guide Viinex 3.0

mode.

Just like for the rolling mode, a replication sink should be linked (in the links section of the
configuration) against video storage object, and the web server object. The link with a video
storage specifies where the incoming video data will be stored. The link with a web server
allows the latter to publish the replication sink instance to make its API available for calling
by external software components.

The API of replication sink in managed mode is in details described in section 3.7 of this
document.

2.1.12 Modbus GPIO-related event source

Besides integration with ONVIF-compatible devices and registering events originating from
such devices, as described in section 2.1.2, Viinex 3.0 supports obtaining of GPIO-related
events from devices that support Modbus TCP protocol (typically a GPIO controller with an
Ethernet interface).

Respective object in Viinex 3.0 has the implementation type modbus, and its configuration
should have the form of:

{
"type": "modbus",
"name": STRING,
"protocol": "modbus" | "vkmodules1",
"host": STRING,
"port": INT,
"inputs": INT

}

There are two mandatory parameters, that is host and inputs, and two optional parameters,
protocol and port.

The optional parameter protocol specifies the wire protocol that should be used to talk to
the controller device. This parameter should have either the value modbus, which stands
for Modbus TCP, or a vendor-specific value for communicating with modbus-incompatible
hardware8 supported by Viinex 3.0. If this parameter is omitted from the configuration, the
value modbus is assumed.

The parameter host specifies the IP address of the device implementing GPIO functionality. It
can be accompanied by the parameter port to specify the TCP port to use for communication.
If the port is omitted, the default value for respective protocol is assumed, which is TCP port
number 502 for Modbus9.

The parameter inputs specifies how many digital inputs should be monitored. For small
number of inputs (8 and below) it is safe to set this value to the total number of digital
inputs that are supported by the controller. If the total supported number of inputs is big,
the number of monitored inputs (and, consequently, the quantity of generated events) can be
limited with this parameter. Note, however, that the digital inputs in Modbus are addressed

8As per December 2018, the only value alternative to modbus supported by Viinex 3.0 is vkmodules1, which
stands for “VKModule Socket-1” controller, for more information see http://vkmodule.com.ua/Ethernet/
Ethernet2.html.

9and port number 9761 for the “VKModule Socket-1” controller.

31

http://vkmodule.com.ua/Ethernet/Ethernet2.html
http://vkmodule.com.ua/Ethernet/Ethernet2.html
https://viinex.com/

User’s Guide Viinex 3.0

by an index value in range [0,255], and there is currently no way how the lower bound of the
range of monitored inputs can be set in Viinex 3.0. That is, no matter to which value 𝐾 the
parameter inputs is set, – Viinex 3.0 would monitor the digital input with indices [0 . . . 𝐾]
(always starting from 0).

Upon startup the modbus object tries to connect to the device specified in its configuration,
reads the digital input states from the device, and sends that information in form of events (one
event per each digital input). After that, the modbus object begins to continuously monitor
the state of digital inputs, and analyses the changes of that state. When a digital input state
change is noticed, the respective event containing the new state is produced.

The modbus object currently does not support controlling actuators via digital outputs, there-
fore it does not expose any HTTP API methods except the one for acquiring the current
state of digital inputs. This is performed via the abstract Stateful interface described in sec-
tion 3.21.1. This method implemented by the modbus object returns a JSON array of values
representing the current states of digital inputs.

This object acts as an event source, implementing a semantical EventSource interface. This
means that modbus object can be used like any other event source – linked with event consumers
like HTTP server (to publish events via WebSocket protocol), and with an instances of rules
and scripts to use the events from digital inputs to perform required actions according to
application-specific logic. The events generated by the modbus object have the form of

{
"topic":"DigitalInput",
"timestamp":TIMESTAMP,
"origin": {

"type":"modbus",
"name":STRING,
"details": { "pin": INT }

},
"data":{"state":BOOLEAN},

}

where the parameter origin.name contains the identifier of the modbus object, origin.de-
tails.pin contains an index of the contact (digital input) whose state has changed, and the
data.state contains the new state of a digital input. An example of such event is

{
"topic":"DigitalInput",
"timestamp":"2019-02-18T21:26:15.0299081Z",
"origin": {

"type":"modbus",
"name":"moxa0",
"details": { "pin": 0 }

},
"data":{"state":true},

}

which means that the very first digital input pin ("pin":0) of a Modbus controller monitored
by object "moxa0" has changed on February 18th 2019 at 21:26:15 UTC, and its new state
became logical “1” ("state":true).

32

https://viinex.com/

User’s Guide Viinex 3.0

2.1.13 Video channel from a third-party VMS

For the purpose of obtaining of live video streams and replication of video recordings into
its own video archive, Viinex 3.0 supports integration with a number of video management
systems from third-party vendors.

In Viinex 3.0 such integration introduces two types of objects, – the video management system
itself, and a VMS channel. The first object should be viewed as a logical connection to a third-
party video management system. It can be a connection to a single server, but it sometimes
can be also a connection to the “federation” of VMS servers of the same vendor. Either case,
the VMS object in Viinex 3.0 is a convenient way to store access credentials that are to be
used by all VMS channels. An internal implementation also uses this VMS object to share
some resources like HTTP/HTTPS connections pool, etc.

Each VMS object is represented in Viinex 3.0 configuration with a JSON object of the form
specific to that particular video management system. The configuration format for such objects
is described in section 2.2.

The second part of third-party VMS integration to Viinex 3.0 is a VMS channel. This is
another object type, not specific to any particular VMS, but common for all of them. The
configuration of this kind of objects should look as follows:

{
"type": "vmschan",
"name": "chan1",
"channel": {"id":"rEMSOtFL"},
"enable": ["video"],
"dynamic": true

}

The type of this object should be equal to vmschan. The common name parameter should
be present. There could be also parameters dynamic and enable which exactly match the
meaning of such parameters as described in section 2.1.2.

The most important and most specific parameter for the vmschan object is channel. This
property represents the channel selector for this VMS channel within the VMS. There are
several possible forms for the value of channel parameter:

"channel": {"id": STRING} |
"channel": {"name": STRING} |
"channel": {"global_number": NUMBER} |
"channel": STRING |
"channel": NUMBER

The meaning of each predicate type depends on the VMS, but typically the "id" and "name"
selector predicates are available and mean the match for logical VMS channel id and VMS
channel human readable name, respectively. The last two forms of syntax for channel property,
when the property has the value of a string or of an integer number, are equivalent to specifying
"channel": {"id": STRING} and "channel": {"global_number": NUMBER}.

Particular third-party VMS integrations may support, besides specifying channel.id or chan-
nel.name or channel.global_number, also certain additional properties for channel identifica-
tion. When this is the case, such additional properties need to be specified in the JSON object

33

https://viinex.com/

User’s Guide Viinex 3.0

syntax of channel field value. For instance, there could be an additional property stream,
identifying a substream from the video source:

"channel": {"id":STRING, "stream":"main" | "sub"}

It depends on a particular third-party VMS and its integration into Viinex 3.0 whether such
additional properties are supported. Please refer to section 2.2 for more information.

Note that the vmschan object is not specific to any brand of VMS; it is rather an abstract
representation for a VMS “channel” (usually mapped to a video camera connected to the third-
party VMS). In order to give the flavour and implementation to the objects of type vmschan,
each of them should be linked with one object which represents a VMS connection (for example,
an object of type trassir, see section 2.2):

"links": [...
["trassir1", ["chan1", "chan2", ...]],

...]

The absence of such connection for any of vmschan objects would result in an error during
Viinex 3.0 startup.

The objects of type vmschan can also be used in the links with other Viinex 3.0 objects, in all
contexts where alse the objects of type onvif could be used. A vmschan may also be used as
a source for managed video replication; see section 3.7 for more details.

2.1.14 PostgreSQL connection

There is a functionality to store events coming from various event sources in a relational
database, as well as to request these stored events from the database. The only RDBMS
supported in Viinex 3.0 is PostgreSQL of version 9.6 or above10

The configuration for an object which represents a connection to PostgreSQL database in
Viinex 3.0 should have the form of

{
"type": "postgres",
"name": "pg0",
"connect": {

"host": "localhost",
"port": 5432,
"database": "viinex",
"user": "viinex",
"password": "viinex"

},
"connections": 4,
"load": ["test.sql"],

10As per March 2021, Viinex 3.0 does not install PostgreSQL automatically. Instead, it is required that a
user deploys the database. Viinex 3.0 accesses the PostgreSQL instance using the credetials provided, and
does not use any features of PostgreSQL any newer than the support for JSONB data type, which requires
PostgreSQL 9.6. On Windows, Viinex 3.0 comes with libpq client, and on Linux it depends on PostgreSQL
client package, – and this is sufficient to communicate with virtually any version of PostgreSQL. Specifically,
versions 9, 10 and 11 were tested.

34

https://viinex.com/

User’s Guide Viinex 3.0

"inline": "CREATE TABLE IF NOT EXISTS TBL(A INTEGER);",
"events": {

"store": true,
"writers": 2,
"limits": {

"max_count": 40000,
"max_depth_abs_hours": 720,
"storage_aware": true

}
}

}

The type of the object should be postgres. The mandatory section connect specifies the in-
formation required to connect to the database instance: a host name or an IP address (property
connect.host, optional), a port number (property connect.port, optional), a database name
to connect to (property connect.database), the user name to access PostgreSQL (property
connect.user), and the password (property connect.password, optional). If any of optional
parameters are omitted from the connect section, the usual rules for PostgreSQL clients apply
in order to determine the default values for these parameters. See PostgreSQL documenta-
tion for more information on this (https://www.postgresql.org/docs/9.6/libpq-envars.
html). If the whole section connect is omitted, the default value is used for it as shown in the
above example (database “viinex”, user name and password “viinex”, PostgreSQL instance on
a localhost running on a default port of 5432).

All other parameters are optional as well. The property connections specifies how many
connections Viinex 3.0 is allowed to establish to PostgreSQL instance simultaneously (e.g. a
connection pool size). This value affects the number of queries which can be ran concurrently.
When this limit is reached, Viinex 3.0 does not attempt to execute a new query until an older
query which is being executed completes, thus freeing the connection and placting it back to
the pool. The default value for connection pool size is 4.

The parameter load represent the array of names of SQL files which might contain the DDL or
DML expressions which need to be executed upon Viinex 3.0 startup. These are custom DDL
or DML, and the main purpose for having these files is to maintain the custom data schema
required by user’s application. Viinex 3.0 itself does not use these DML for creating relations
necessary for event logging (these DML are built into Viinex 3.0 and are always being run,
despite the presence or absence of the load parameter). The SQL files are sought for in the
specific folder, which is

Program Files\Viinex\share\sql

on Windows, or

/usr/share/viinex/sql

on Linux. SQL files are executed sequentially in order they appear in the load array.

The parameter inline serves for the same purpose as the parameter load, however the inline
may contain the literal text of DDL or DML statements, thus preventing the need for additional
SQL files. In case if both load and inline parameters are present, – the inline statements
are executed in the last place.

Note that if an exception occurs as the result of the initial DDL/DML statements execution,
Viinex 3.0 treats this condition as a fatal error and refuses to start. For this reason, if the

35

https://www.postgresql.org/docs/9.6/libpq-envars.html
https://www.postgresql.org/docs/9.6/libpq-envars.html
https://viinex.com/

User’s Guide Viinex 3.0

load or inline parameters are given, or if the events section is given (which results in an
execution of additional DDL for creating the relations for logging events), – in either of these
cases the instance of PostgreSQL needs to be available at the moment of Viinex 3.0 startup.
It’s also worth noting that the DDL/DML statements are only executed once, upon Viinex 3.0
startup. This means that database relations are not be healed or re-created while Viinex 3.0 is
running, – this would require the restart of the whole Viinex 3.0 instance or of a configuration
cluster where the postgres object is configured.

The events section specifies the behavior of the postgres object for logging of Viinex 3.0
events into the database. In order for the events received by the postgres object (as the event
sink) to be logged into the database, the events.store needs to be set to true. The default
value for this property is false.

The optional events.writers property specifies the number of concurrent threads which per-
form the write operators to store the received events to the database. The default and recom-
mended value for this property is 2.

The optional events.queue property specifies the maximum length of the queue of events to
be written into the database. This value may affect the behavior of the system if the database
instance is under heavy load, or if there is a large number of events being generated and
received by postgres object in a unit of time. The default value for this property is 1000.

The optional events.limits section specifies how the event log table should be rotated. In the
course of execution, as events are being generated, the size of respective table in the database
may grow to high values, while the relevance of older events may be pretty low. Usually the
older events should be wiped out from the database. The events.limits section provides three
options for this: number of events can be limited based on the age of events (according the the
wall clock), and this can be specified in the property events.limits.max_depth_abs_hours,
– this property sets the maximum age of an oldest event in the database, in hours. (The value of
720 is roughly equal to maximum event age of 1 month). The property events.limits.max_count
specifies the maximum number of events to be kept in the database. The events are sorted by
their timestamp, in descending order, and the first max_count events are kept, while the rest
are wiped out. The property events.limits.storage_aware means that the age of events
to be wiped out is queried from the video storage(s), so that the depth of a video storage
effectively limits the depth of event storage.

NB! In order for the events.limits.storage_aware option to take its
effect, the postgres object needs to be linked with one or more storage
objects in the links section of Viinex 3.0 configuration.

Now, there’s an attention needs to be paid with regard to the way how the limits described
in the events.limits section are applied. Zero or more of the limits may be specified. If no
limits are specified or the limits section is omitted, then the event log table is not limited by
Viinex 3.0. If only one limit is specified, then it works exactly as described above. However
if more than one limit is specified, all of them are calculated, but the oldest limit takes effect.
This contrasts with the logic of specifying the limits for video storage.

The postgres object in Viinex 3.0 implements the event sink interface, which means that in
order to receive the events that need to be stored to the database, the postgres object needs
to be linked with event sources. Said event sources could be ONVIF video cameras, video
analytics modules, external processes, scripts, and so on.

In order to retreive the events stored to the database later by means of HTTP requests, an
HTTP API is provided. That API is described in section 3.15.

36

https://viinex.com/

User’s Guide Viinex 3.0

2.1.15 Script

In order to provide flexibility for using Viinex 3.0 in various scenarios, the latter has built-in
support for scripting.

That support is implemented just like all other objects’ implementations in Viinex 3.0. Namely,
an object of type script is introduced. Objects of that type represent an instance of JavaScript
engine11. The instances of that objects run in parallel independently of each other and do not
have shared data structures (although they of course can share the same JavaScript code,
completely or partially, see below). Each instance of script, being essentially a JavaScript
execution context, runs in a single thread.

Scripts can serve for the following purposes in Viinex 3.0:

• maintain internal state according to a custom logic, and expose a part of that state via
HTTP API (see section 3.21.1);

• accept simple requests to update the internal state and reply to such requests to the
parties who initiate them (see section 3.21.2);

• receive and process events from other objects linked to this script object; generate and
send new events;

• query and control other objects linked to this script object, – for example, video record-
ing controller, PTZ device, video renderer, stream switch, and so on, – by means of calling
respective JavaScript methods for such objects (see chapter 4).

The configuration of the script object should have the following form:

{
"type": "script",
"name": STRING,
"load": [STRING],
"inline": STRING,
"onload": STRING,
"ontimeout": STRING,
"onupdate": STRING,
"onevent": STRING,
"clusters": BOOLEAN,
"init": JSON

}

All of above parameters are optional (except the type and name which are mandatory for every
object in Viinex 3.0), but there will be typically at least the load or inline values set. Below
the explanation of that parameters’ meaning is given.

The most important parameter is load, which, if given, should be an array of strings, where
each string should represent a path to a file on a local filesystem containing JavaScript source
code. All files specified in the load parameter should be present and readable at the time of
Viinex 3.0 startup, otherwise the script object reports configuration error. The files mentioned
in this parameter are executed sequentially, in the order they are mentioned.

11To be precise, Viinex 3.0 uses the Duktape engine https://duktape.org/ which implements ECMAScript
5 [23] as per November 2018.

37

https://duktape.org/
https://viinex.com/

User’s Guide Viinex 3.0

The parameter inline may contain an inline JavaScript code, – that is, some part of code
can be included directly in Viinex 3.0 configuration. If both load and inline parameters are
present, – the JavaScript code contained in the inline parameter is executed after all code
from files mentioned in the load array have run.

The source code from the files mentioned in the load array, as well as the source code from the
inline parameter is executed only once, when Viinex 3.0 instance is being started (or when
the cluster is being created).

It is important that at the time when that code is executed, the script object is not yet linked
to any of Viinex 3.0 objects (and they might be not created by the time). None of API specific
to Viinex 3.0 is available at the time when load and inline code is executed. That’s why it is
recommended that this code only contains definition for functions and/or data structures but
does not try to perform any actions for side effects.

Another option to load the script code is to organize that code as JS modules, place them in
a predefined paths which Viinex 3.0 uses to search for JS files when executing the require()
function (see section 4.2.6), and load as a normal module. After that, however, the onload,
ontimeout, onupdate and onevent functions (see below) that might be defined by that module,
need to be lifted into the root naming context of the script, – and for that there is a pre-
authored module named vnx-script-instance. Thus, a script configuration to use the JS
implementation code from a module could look as follows:

{
"type": "script",
...
"inline": "require(’vnx-script-instance’)(’script-impl.js’);",
...

}

where script-impl.js is a substitute for an actual script implementation module name.

Four parameters onload, ontimeout, onupdate and onevent may contain the names of JavaScript
functions that should be called to handle respective events (here event means not a Viinex 3.0
event, but a certain point in the lifecycle of the JavaScript state machine). These handlers
have the following meaning:

• onload handler is called when the script code is completely loaded, and all Viinex 3.0
objects are linked. Basically, this is an entry point, when the instance of script can
complete its initialization, having the access to Viinex 3.0 API and linked objects, and
begin its normal operation.

• ontimeout handler is called when (and if) the timer, previously established by this script
for itself, rings.

• onupdate handler is called when a request for the Updateable interface HTTP call
described in section 3.21.2 is received from the HTTP server where this script object is
published.

• onevent handler is called when an event is received from one of event sources that this
instance of script is linked with.

For more information on the use of that handlers in scripting see chapter 4. By default, if
some of that four parameters are omitted, it is assumed that the respective handler should

38

https://viinex.com/

User’s Guide Viinex 3.0

have the name exactly matching the parameter name (that is – onload handler has the name
onload, and so on). Alternatively, the handler names can be overriden. The handlers with
either default or overriden names should be the top-level JavaScript functions.

An optional boolean parameter clusters, when set to true, gives the respective script
an access to the functionality of managing Viinex 3.0 configuration clusters, as described in
section 4.2.8. When omitted, the value of this property is assumed to be false.

The parameter init may take an arbitrary JSON value which is passed as an argument into
the onload handler when the latter is called. This is a mechanism for passing the initialization
parameters into the script, which can be convenient if the source code of the script is written
to be reusable: properly written reusable script can be made applicable in all scenarios it
was designed for without the need for altering its source code for every use case: the actual
adjustment of the script behaviour can be performed from the Viinex 3.0 configuration by
means of changing the value of init parameter.

It is important that in the runtime each instance of the script can only get the events, update
requests, publish its state, and interact in any other possible way only with those Viinex 3.0
objects that are linked with this instance of script in the links section of the configuration.
The Viinex 3.0 objects that are not linked with the script are inaccessible for it.

Each instance of the script object in Viinex 3.0 implement the internal interfaces of event
source (that is – a script can be used in all links where an event source is required), event con-
sumer (that is, it can be linked with event sources), stateful, and updateable (see section 3.21).

For more information on scripting in Viinex 3.0 please refer to chapter 4.

2.1.16 External process

Overview

Besides the scripting capability, Viinex 3.0 allows one more way of integration with third party
systems – by means of interfacing using an external process.

The idea behind this resembles the FastCGI technique for interfacing between web servers and
various related applications. The webserver could start an external process, manage its lifecy-
cle, and communicate with that process via named pipes or UNIX domain sockets. Likewise,
Viinex 3.0 may start an external process, manage its lifecycle, and communicate with that
process using appropriate IPC methods.

An object for starting and interacting with an external process should have the type process
in Viinex 3.0 configuration.

There are two mechanisms provided for communication between Viinex 3.0 and an external
process, which serve for two different purposes:

• Events interchange. An external process can obtain events from Viinex 3.0, and that
process can also generate events and pass them to other objects in Viinex 3.0. For that,
the simple mechanism of standard input/output is used. Viinex 3.0 starts the external
process with pipes connected to that process’ input and output file descriptors (0 and
1 respectively). All events that the process object is subscribed to via links section
of the configuration – are serialized into JSON format and sent by Viinex 3.0 to the
standard input of that process. And vice versa, everything that the process writes to its
standard output is expected to have JSON syntax, and if it conforms, – it is accepted by

39

https://viinex.com/

User’s Guide Viinex 3.0

Viinex 3.0 as an event from that process. If there are event consumers linked with that
instance of process object, they get events produced in this way.

• Video processing. Viinex 3.0 provides a native API to obtain uncompressed video from
raw video sources or from video renderers. Using that API, an external process can
obtain the video frames, for instance, to perform some custom video analytics. The
IPC methods that are used to implement the API to acquire the uncompressed video
stream in Viinex 3.0 are shared memory and named pipes (on Windows) or UNIX domain
sockets (on Linux), so the raw video interchange between processes on the local machine
is performed with zero copying. For some more information on the native API see
section 5.2.

These two mechanisms enable a number of applications. An event-based integrations with
third-party systems can be made relatively easy in almost any programming language, having
in mind the simple interface for events interchange (that is, the standard input/output of
data in JSON format). The native interface for raw video processing requires about half a
dozen of native function C calls, which also should not be a problem in most programming
environments; in exchange the application efficiently gets the live raw video stream ready for
analytics. It’s up to the application what to do with the results of that analytics – it can be
either injected back to Viinex 3.0 in form of events, or it can be stored or passed for further
processing using some independent method.

Configuration

The configuration of an object of type process should have the following form:

{
"type": "process",
"name": STRING,
"cmdline": STRING |
"executable": STRING,
"args": [STRING],
"cwd": STRING,
"env": [[STRING, STRING]],
"restart": BOOLEAN,
"timeout": BOOLEAN,
"init": JSON

}

Here, the only mandatory parameters, besides the type and name, are cmdline or executable
(mutually exclusive). All other parameters are optional.

The cmdline parameter specifies the command line to be executed in order to start an external
process. If given, this command is executed by means of the shell (command interpreter). As
an alternative, the parameter executable can be given in order to specify the path to an
executable file that needs to be run. If that option is given, the parameter args might be
useful to set the command line argument for running that executable. The value of this
parameter should be a JSON array of strings, – each string representing a single command
line argument, as they would have been split by the shell (separated with spaces). If the args
parameter is not given, it is assumed that no command line arguments should be passed when
running the process.

40

https://viinex.com/

User’s Guide Viinex 3.0

NB! Setting the cmdline parameter is only supported in Viinex 3.0
for Linux. On Windows the only available way of specifying how the
process should be started is setting the path to process’ executable with
the executable parameter, and optionally setting the command line
arguments via the args array.

The optional cwd parameter allows the working directory of the newly created process to be
set. If this parameter is omitted, the newly run process inherits the working directory from
the Viinex 3.0 instance that the process is supervised by.

The env parameter should have the form of array of pairs of strings (each of which is, in its
turn, encoded as a JSON array of 2 elements), and provides the way to set the environment
variables set for the newly created process. If this data is given, each pair in the top-level array
env is interpreted as the pair – an environment variable name (the first element of a tuple), and
an environment variable value (the second element of a tuple). The environment given by the
env paramener is merged with the environment inherited by the newly created process from
its supervising Viinex 3.0 instance; wherein the variables provided in the env array override
those from inherited environment.

The lifecycle of the process is managed by Viinex 3.0. This means that the process is started by
Viinex 3.0, and the latter watches for the status of the process. If the process stops, Viinex 3.0
has an option to either leave it stopped, or (typically) to restart it. This behaviour is defined
by the restart parameter. If not set, the default vaule is assumed to be true, – that is, the
failed process is restarted by default.

Upon shutdown, Viinex 3.0 tries to shut down its child processes gracefully. In order to do that,
Viinex 3.0 closes the input and output file descriptors associated with the external process.
The implementation of the process should read its standard input, and, when the EOF (end
of file) is received from the STDIN file descriptor, – the external process should complete its
activity as soon as possible and quit.

If an external process breaks this protocol, and fails to complete after its standard input was
closed, – Viinex 3.0 would forcefully terminate such process. The parameter timeout defines
the time interval, in seconds, that Viinex 3.0 should wait after closing external process’ STDIN,
before terminating that process. The default value for this parameter is 10 seconds.

Last but not least, the init configuration parameter is intended for passing an arbitrary
initialization information into the external process. This parameter can take a value of any
JSON type and form. When the process is started, the very first message it receives on
the standard input is this initialization value, serialized into JSON. The rest of JSON values
(second, third, and so on) coming to process’ standard input are the events coming from
Viinex 3.0. This is true even if the init value is not set: in this case, the first JSON value
coming to the external process’ standard input would be null.

Runtime protocol

Like it was mentioned above, the external process receives at its standard input at least one
JSON value, which is equal to the value of init property of that process object configuration.
After that, the process receives the events from event sources that it is linked to in the links
section of Viinex 3.0 configuration.

Implementations should read out the data from their standard input stream file descriptor,
and wait for the end of file signal on that descriptor. This EOF signal on the stdin must be

41

https://viinex.com/

User’s Guide Viinex 3.0

interpreted by implementations as the command to shut down. After the EOF is received on
the stdin, the external process should complete its activity and exit as soon as possible.

The strings that are written by external process to its standard output are interpreted by Vi-
inex 3.0 as JSON records, in order to generate events and send them to event consumers linked
with that instance of the process. Upon receival, each of these JSON records is examined
for the presence of two fields, topic and data. The topic field is mandatory, it should be
present, and its value should have the type STRING. This field serves to set the topic of the
event to be generated. The field data is optional and serves to set the payload of the event to
be generated. The resulting event is formed by Viinex 3.0 to match the following pattern:

{
"topic": STRING,
"timestamp": TIMESTAMP,
"origin": {

"type": "Script",
"name": STRING

},
"data": VALUE

}

where topic and data are substituted from the JSON record received from the external process,
while the timestamp is set to the current time (in UTC timezone), and origin.name is filled
with the identifier of this process object, according to Viinex 3.0 configuration.

Another IPC channel provided between Viinex 3.0 and an external process is the standard error
stream of the process, which serves for the logging purpose. All strings written by the process
to its file descriptor 2, which is standard error stream, are caught by Viinex 3.0 and directed
into its own log (syslog or log file) on behalf of respective process object. The severity level
assigned to such log messages is INFO.

As stated in the overview, implementations are free to use the functionality for obtaining raw
live video streams from the instance of Viinex 3.0 they are supervised by, using the API briefly
described in chapter 5.

2.1.17 RTSP server

Viinex 3.0 has a built-inf RTSP server for streaming video to remote clients, including other
instances of Viinex 3.0.

Configuration object for RTSP server in Viinex 3.0 is denoted by object type rtspsrv. This
configuration object may have four members, all of which are optional: port, auth, transport
and mcast_base. An example for RTSP server configuration is given below:

{
"type": "rtspsrv",
"name": "rtspsrv0",
"port": 1554,
"auth": {

"require": true,
"realm": "ViinexAuth",
"htdigest": "C:/htdigest.txt",

42

https://viinex.com/

User’s Guide Viinex 3.0

"accounts": [
{

"type": "password",
"login": "admin",
"digest": "510070c93040af4bef5e6d311d26af74"

}
]

},
"transport": ["udp","tcp","mcast"],
"mcast_base": ["224.0.0.70", 20000]

}

The port parameter defines the TCP port number the RTSP server should listen on. If not
specified, the default value of 554 is used.

The auth section of configuration object defines the credentials for accessing RTSP server by
clients. Its syntax and semantics is described in section 2.4.2. Viinex 3.0 only supports digest
authentication for RTSP clients [13]. If auth section is missing from configuration of the RTSP
server instance, or the value auth.require is set to false, – the instance of RTSP server does
not require authentication from connecting clients.

The transport parameter defines the RTP transport priority when negotiating with connect-
ing RTSP clients. The syntax for value of that parameter is described in paragraph 2.4.1.
transport parameter is optional; if not specified, it’s value defaults to

"transport": ["udp","tcp"]

which enables both UDP unicast and TCP (in that order of preference), but disables UDP
multicast. Note that if "mcast" value is specified as one of the elements of transport pa-
rameter, it is required that multicast group and base port are explicitly set in the mcast_base
parameter.

The mcast_base parameter is optional, unless transport includes value "mcast" (in the latter
case it becomes mandatory), and should have the syntax of a tuple of two elements, represented
as JSON array of two elements. The first element of that tuple should be a string – an IPv4
address – interpreted as the address of multicast group to send the data to, if server and client
choose UDP multicast during RTP transport negotiation. Second element of the tuple should
be an integer, interpreted as base port number. Viinex 3.0 RTSP server, when sending data
over RTP multicast, uses different port for each video source. The base port number defines
the lowest port in the range to be used. The highest port number is automatically inferred
from the base port number and the number of video sources served by Viinex 3.0 RTSP server
instance. Viinex 3.0 assigns one separate multicast port number to each published live video
source. For instance, given the above example, if two live video sources are published in
RTSP server rtspsrv0, their data would be sent to multicast addresses 224.0.0.70:20000
and 224.0.0.70:20001. The correspondence between video source and multicast address is
established by Viinex 3.0 automatically and sent to the RTSP client in the SDP document,
so the only information required to set up multicast streaming by means of Viinex 3.0 is the
multicast group address and base port number.

To specify which video sources and/or video archives should be accessible via Viinex 3.0 RTSP
server, they need to be linked to the instance of RTSP server in the links section of the
configuration document. Each video source linked to the RTSP server is published under its
name. Therefore, given the RTSP server convifuration given above, and the following links
section,

43

https://viinex.com/

User’s Guide Viinex 3.0

"links": {
...

["rtspsrv0", "cam1"],
["rtspsrv0", "cam2"],

["rtspsrv0", "stor1"],
["stor1", ["cam3","cam4"]],

...
},

video sources cam1 and cam2, and video archive stor1 would be published in RTSP server
rtspsrv0. The videocameras, as live sources, would become accessible at RTSP URIs

rtsp://SERVERNAME:1554/cam1

and

rtsp://SERVERNAME:1554/cam2

respectively.

If a link is established between a video archive and RTSP server, the RTSP URI for obtaining
of a video record is defined by the TCP port which the RTSP server listens on, the name
parameter value of the video archive object, and the name parameter value of the video source
object stored within the video archive:

rtsp://SERVERNAME:port /VideoArchiveName /VideoSourceName .

There is also possible to specify begin= and end= parameters in the RTSP URI to select the
time interval in the stored video. The syntax for specifying that parameters matches that in
HTTP requests for HLS stream or for exporting video (see sections 3.5.6, 3.5.5).

Given the above configuration example, it is possible to get access to video records from sources
cam3, cam4 in video archive stor1 at RTSP URIs like

rtsp://SERVERNAME:1554/stor1/cam3?begin=1478545200000&end=1478545800000

or

rtsp://SERVERNAME:1554/stor1/cam4?begin=2017-10-08T21:00:53.231Z
&end=2017-10-08T21:05:00Z

respectively. It is also possible to not specify the begin= and end= parameters, in which case
the RTSP server would give the access to all available video for corresponding video source.
In both cases, to perform navigation within an open RTSP session, the RTSP client should
specify Range: header in his PLAY requests. Viinex 3.0 RTSP server supports the npt= and
clock= time units in Range: header (see [4] for more details).

Note that in order for stored video records to become available via the RTSP server, it is not
required that corresponding live video sources are linked with the same RTSP server. When a
video archive is published within the RTSP server, the latter publishes all video records stored
in that video archive, with no connection to live video sources.

2.1.18 WebRTC server

Viinex 3.0 is able to restream the live video sources to remote clients compatible with WebRTC

44

https://viinex.com/

User’s Guide Viinex 3.0

stack of protocols (see [16], [17], [18], [19], [20], [21], [22] for more information).

For that, the object of type webrtc is used. This object acts as a video data consumer for
live video sources in Viinex 3.0, and provides an HTTP API which should be exposed via the
webserver. The HTTP API is used for “signaling” purpose (according to the WebRTC jargon),
— that is, by means of HTTP calls remote clients express their need for creation of a WebRTC
session for a specific video source, acquire the SDP offer for respective WebRTC session, and
respond with an SDP answer. HTTP API for the WebRTC object is described in section 3.14.

The configuration of a webrtc object could look as follows:

{
"type": "webrtc",
"name": "webrtc0",
"stun": [["stun.l.google.com", 19302]],
"stunsrv": 3478,
"key": "etc/ssl/private/sample-privkey.pem",
"certificate": "etc/ssl/private/sample-certificate.pem"

}

There are two mandatory parameters in that configuration, key and cerificate, while other
parameters are optional.

The key and certificate values should contain a path to the private key file and X.509
certificate file, respectively, which are going to be used by the WebRTC server for DTLS
handshake. A sample private key and self-signed certificate12 are installed when deploying
Viinex 3.0 on Windows. One can generate a new private key and a self-signed certificate using
OpenSSL with the following command:

openssl req -newkey rsa:2048 -nodes -keyout privkey.pem -x509 \
-days 365 -out certificate.pem

The stun parameter may contain a JSON array of pairs (which is, in turn, encoded as a JSON
array of 2 elements) of a string – a hostname or IP address – and an integer – a port number of
a STUN server. There can be multiple STUN server specified in the configuration, and there
can be zero number of STUN servers as well. In the latter case, the WebRTC server will only
be reachable by remote clients if their traffic can be directly routed to the server where the
instance of Viinex is running (i.e. if the client and the server are on the same network, or if
the server has a “white” IP address on the Internet). If the client and the Viinex 3.0 server are
both behind the NAT, the stun parameter should be specified.13

Viinex 3.0 has also a built-in STUN server component, which makes the deployment of We-
bRTC streaming server easier in certain scenarios. To enable the STUN server in Viinex 3.0,
the optional property stunsrv should be set into an integer number which is interpreted as
UDP port number to listen on. Demo UI available for Viinex 3.0 assumes that STUN server
is enabled and is listening on port 3478, so it is suggested that this port number is used.

12The use of self-signed certificate is appropriate for the purpose of WebRTC because the client receives a
certificate fingerprint in the SDP offer.

13There is a list of publicly available STUN servers on the Internet. In particular, Google has its STUN servers
available, in the exable above the DNS name stun.l.google.com resolves to a server matching the geolocation.
The traffic generated by Viinex 3.0 to such STUN server is neglectable – it’s only a few UDP datagrams per one
WebRTC session. However, Google does not provide support for using their servers by thirdparty applications.
Therefore it is recommended that an instance of STUN server is deployed for production use of WebRTC
feature by the application developer who uses Viinex 3.0 video management SDK.

45

https://viinex.com/

User’s Guide Viinex 3.0

When the stunsrv property is omitted from WebRTC configuration, the builtin STUN server
is disabled.

In order to publish live video sources using the WebRTC server implemented in Viinex 3.0,
the former should be linked with the webrtc object in the links section of the configuration
document. Also, it is required that the webrtc object is exposed in at least one HTTP server
(the webserver object), so that its signaling API becomes available to remote clients. Note
that despte some video sources may be published in that webserver, it is unrelated to the
set of video sources that are going to be available via WebRTC. The latter is only affected by
what video sources are linked with the webrtc object.

Currently (as per October 2019) the implementation of WebRTC in Viinex 3.0 has the following
limitations:

• There can be only one video source at a time, published in a single WebRTC session.
However an existing WebRTC session can be switched between video sources, without
the need to establish a new session.

• Viinex 3.0 does not support (initiate) routing media data via TURN servers.

2.1.19 Web server

Viinex 3.0 has a built-in web server implemented for making media data accessible, and to
expose API for applications using Viinex 3.0.

Configuration object for web server in Viinex 3.0 is denoted by object type webserver. Such
configuration object may contain two optional fields: port and staticpath. An example for
video archive configuration is given below:

{
"type": "webserver",
"name": "web0",
"port": 8880,
"staticpath": "/usr/share/viinex/html",
"static": [

["images","/usr/share/images"],
["logs","/var/log"]

],
"auth": {

"require": true,
"realm": "ViinexAuth",
"htdigest": "C:/htdigest.txt",
"accounts": [

{
"type": "password",
"login": "admin",
"digest": "510070c93040af4bef5e6d311d26af74"

},
...
{

"type": "apikey",
"key": "remoteagent1",

46

https://viinex.com/

User’s Guide Viinex 3.0

"secret": "foobarsecret1"
},
...

]
},
"tls": {

"key": "etc/ssl/private/sample-privkey.pem",
"certificate": "etc/ssl/private/sample-certificate.pem",
"chain": ["etc/ssl/private/ca1.pem", "etc/ssl/private/ca2.pem"]

},
"cors": "*",
"hls": {

"fragments": 3,
"duration": 5

},
"clusters": true

}

The field port defines a TCP port number which Viinex 3.0 HTTP server should listen on.
Default value for this field is 8880; this port number is chosen if port field is absent in HTTP
server configuration. The staticpath field should contain path to a folder on local filesystem
where Viinex 3.0 static web content is deployed. The contents of specified folder is served by
Viinex 3.0 web server starting at root URL.

The auth determines how the clients should authenticate themselves when accessing the web
server. The syntax and semantics of this section is covered in paragraph 2.4.2. If auth section
is omitted, or the value auth.require is set to false, the instance of web server requires no
authentication from its clients, this permitting the anonymous access.

Note that the value of auth.require parameter in webserver configuration only affects the
public part of HTTP API. There is also a private part of API in Viinex 3.0, which is not covered
by this documentation. This private API is used in interaction between replication sink and
replication source. Private API always requires authentication (that is, auth.require value
of corresponding web server configuration does not affect private API protection). Therefore,
even if the value auth.require is set to false, in the web server which is used to expose the
Replication Source, an auth section should be configured to match the credentials (API keys
and secrets) set at corresponding remote instances of Replication Sinks. Otherwise, replication
sinks will not be able to authenticate against replication source and upload the data.

The optional parameter tls, if present, instruct the instance of the web server to act as
HTTPS server rather than a plain HTTP server. Note that each instance of webserver
object can only be either HTTP or HTTPS server, not both at the same time. The tls
property, when present, should be a JSON object containing two mandatory properties, key
and certificate, specifying the path to the private key and certificate, respectively, on a
local filesystem. The key and certificate files should be in PEM format and the key should not
be protected by password. There may also be an optional parameter tls.chain to specify the
chain of intermediate certificates. The chain property, if present, should be a JSON array of
strings, each pointing to a local PEM file containing a certificate of an intermediate certification
authority.

The optional parameter cors is intended to set up the cross-origin resource sharing policy for
the web server instance. This parameter can take a value of string or of an array of strings, each
denoting a separate Origin for which cross-origin resource sharing is declared to be permitted.
If the cors parameter is set to an array of strings, there can be several such origins; if it is set to

47

https://viinex.com/

User’s Guide Viinex 3.0

a single string, that string defines the only allowed origin. There are two special cases for cors
parameter: this is a single string containing an asterisk, "*", which denotes that the instance
of web server being configured permits cross-origin connections from arbitrary origins, – and
an empty string, which is equivalent to not setting the cors parameter at all, and denotes that
the web server instance does not support CORS. This is also the default behaviour.

The optional parameter hls allows for tuning how the video streams are published via HLS in
the web server instance. This parameter should be a JSON object with two integer properties,
fragments and duration. The former defines the number of fragments published in HLS
playlist for each live video source within the web server. The latter defines the minimum
duration for each fragment. Note that actual fragments’ duration depends on video source’s
encoder settings. When publishing a video stream via HLS, Viinex 3.0 splits transport stream
into fragments on GOP boundaries. Therefore, if duration value is set to 1 second, but the
I-frames in published video stream come no more frequent than once in every 5 seconds, –
the actual fragment size would be 5 seconds for that video stream. If the hls parameter
substructure is omitted, the default settings are applied, which instruct Viinex 3.0 to prepare
for each published live video source a playlist of 3 fragments, each of at least 5 seconds long.

The clusters parameter, when set to true, makes the cluster-related API available under that
instance of webserver. The cluster-related API is described in section 3.23 of this configura-
tion. Note that this includes the cluster management itself (creation, removal, enumeration of
existing clusters) as well as accessing the objects published by means of dynamic clusters, and
receiving the events from such objects via the WebSocket interface. All of that functionality is
enabled by the "clusters": true flag. By default, if not set explicitly, the clusters-related
functionality is disabled for the specific webserver instance, as if the "clusters" parameter
was set to false.

2.1.20 Publisher for objects in configuration clusters

Publishing of objects created in the main static configuration of Viinex 3.0 instance requires to
link that objects with an instance of webserver object. However, when it comes to publishing
the objects created dynamically within a cluster, the problem is that objects within a cluster
can only “see” and interact with each other but not with objects in other clusters and/or main
(static) configuration. As a consequence, objects in a dynamically created cluster can only be
linked with a webserver(s) created in the same cluster, which is typically not what is required,
because that webservers would require a new HTTP port, different from the HTTP port of
the webserver in the main configuration.

The solution is to have a formal object of type "publish" which can be described in the
configuration of a cluster and used to link other objects in that cluster. Establishing such
link means that each object in a cluster linked to a "publish" object becomes available in
the HTTP server(s) in the main configuration via HTTP API calls described in 3.23.6. This
behavior has no options to change, so all the instances of a "publisher" object within a cluster
are essentially equivalent, and therefore there is no reason to have more than one instance of
such object in a cluster. The configuration of this object is shown below:

{
"type": "publish",
"name": "publish0"

}

where the only variable parameter is the name of that object (here "publish0", and it only

48

https://viinex.com/

User’s Guide Viinex 3.0

plays the role for authoring the "links" section of cluster’s configuration. A simple example
for cluster’s configuration could look like

{
"objects":
[

{
"type": "onvif",
"name": "cam1",
"host": "192.168.0.131",
"auth": ["admin","admin"]

},
{

"type": "publish",
"name": "publish0"

}
],
"links":
[

["cam1", "publish0"]
]

}

— here, an ONVIF device is created with a name "cam1", and its live video stream is published
in the cluster-enabled webserver (which should have been created in the static part of Viinex 3.0
configuration). If a cluster with name cluster1 is created with the configuration given above,
the video stream from ONVIF camera with address 192.168.0.131 is going to be available at
URI http://SERVER:PORT/v1/cluster/cluster1/cam1/stream.m3u8. For more information
on clusters-related HTTP API see section 3.23.

For the purpose of section 2.5, the "webserver" and the "publish" concepts are interchange-
able. Establishing a link between a publisher and some specific object is semantically equivalent
to establishing a link between a web server and that object.

2.1.21 Floating license server

Viinex 3.0 requires a license document for functioning, and the license document could be
bound to a USB device (SenseLock dongle), to the server’s hardware (identidied by so called
hwid), or to some network interface card on the server (identified by the NIC’s MAC address).
However these parts may be hard to manage if some kind of containers (Docker, LXDE) or
virtualization is being used for deployment. This could also be the case in a cloud environment,
where an instance may be migrated from one physical server to another.

For this reason, Viinex 3.0 supports the model of licensing when a pre-defined set of Viinex 3.0
components may be ran on several physical or virtual hosts, and still use the same shared
license document. Such licenses may be considered floating across these hosts. Viinex 3.0
instances each running on these hosts would use the license leases issued based on the same
license document, and this is performed with the help of a floating license server.

The configuration for such server looks as follows:

{

49

https://viinex.com/

User’s Guide Viinex 3.0

"type": "licmgr",
"name": "licmgr0"

}

so it basically has no parameters to set except the name of license server object. The object
type for license server should be licmgr.

The license server object should be linked with one or more web servers, as described in
section 2.5. The web server may impose its own requirements on authentication and/or
the use of TLS. The floating license server exposes an Updateable programming interface
described in section 3.21.2. The specific format of updates acceptable by the floating li-
cense server is not disclosed; it is private between the floating license server and floating
license client. However the mechanism for this API exposure is common for all compo-
nents that implement the Updateable API. What is important is that the floating license
server having the name licmgr0, when linked with a web server, is published under the URL
http://SERVERNAME:PORT/v1/svc/licmgr0, and this URL should be specified in the con-
figuration of floating license clients wishing to access respective floating license server. The
configuration of a floating license client is described in section 2.6.2.

The floating license server dynamically uses the licenses (leases) from the license document
which is specified at its hosting Viinex 3.0 instance. When a floating license client requests
a license lease from the server, the latter acquires such lease locally on behalf of that client.
When the client returns the lease, respective licenses get returned to the local pool of licenses.
In this way all floating license clients connected to the same license server share the same
license pool, and the same pool is used for Viinex 3.0 objects that might be co-located with
floating license manager (on the same Viinex 3.0 instance).

The interaction between license server and its client is designed to be fault-tolerant, e.g. the
license lease do not get invalidated when a network fault occurs. As a rule, after a short network
outage the leases are successfully renewed for both client and server. Even if a longer network
outage occur, the client “survives” the absence of connection to license server for up to 8 hours.
The server keeps the expired leases taken by a client as long as there is no lack for licenses.
Only in that case the expired licenses are considered “released” by the server. However even in
that case, and also in the case if the license server gets restarted, – the floating license clients
continue to work, and attempt to re-acquire the license leases they need. The fault only occurs
in two cases: when the license client is working for more than 8 hours without the ability to
contact the license server, or if after it contacts the license server, when while attempting to
re-acquire the license leases that are currently in use, the client faces server’s explicit refusal
to acquire required license leases. In this case license manager client shuts down its Viinex 3.0
instance.

2.2 Third-party video management systems

This section describes the configuration options for Viinex 3.0 objects which represent connec-
tion points to specific third-party video management systems. That objects should be linked
to vmschan objects in order to give the latter specific “flavour” (i.e. to actually associate a
brand-neutral vmschan object with a video channel at the specified VMS instance). For more
information on vmschan object configuration see section 2.1.13

All product and company names mentioned throughout this section are trademarks or regis-
tered trademarks of their respective holders. Use of that product and company names does
not imply any affiliation with or endorsement by any of them.

50

https://viinex.com/

User’s Guide Viinex 3.0

2.2.1 Milestone XProtect

For interaction with Milestone XProtect VMS product family (https://www.milestonesys.
com/solutions/platform/video-management-software/), an object of type milestone needs
to be created in Viinex 3.0 configuration. It should have the following form:

{
"type": "milestone",
"name": STRING,
"host": STRING,
"port": INT,
"auth": [STRING,STRING],
"certificate": STRING

}

In the above, property host should contain the IP address or a resolvable host name of the
server where the instance of Milestone XProtect Management Server can be reached. Optional
property port should contain the TCP port which is used by Milestone XProtect Management
server to expose its Management API. If not specified, the value of port number 443, which is
the default for C-Code product family, is assumed.

A pair of strings under the property auth should contain the login and password which should
be used by Viinex 3.0 to authenticate at Milestone XProtect VMS instance.

NB! In the context of interoperation with Milestone XProtect, Viinex 3.0
implements only Basic HTTP authentication in conjunction with TLS,
when accessing Milestone XProtect Management Server API. NTLM au-
thentication is not supported for that purpose. For that reason, login
and password that Viinex 3.0 uses to authenticate at XProtect Manage-
ment Server should not be login and password of a Windows user. The
credentials specified in auth section of milestone object configuration,
should appear in “Security – Basic Users” section in Milestone XProtect
Management Client.

Optional property certificate may contain the path to a local file holding the TLS certificate,
in PEM format, that is used by the instance of Milestone XProtect Management server. If
certificate property is omitted, Viinex 3.0 would connect to XProtect Management server
using TLS, but without checking the certificate authenticity. This scenario should be avoided
in public networks.

Milestone XProtect integration in Viinex 3.0 supports specifying a video stream using either
the camera identifier (GUID), or the camera human readable name. For that, properties
channel.id or channel.name of vmschan object configuration should be used, respectively:

"channel": {"id":STRING}
"channel": {"name":STRING}

The human readable name of camera can be found in its configuration properties in Milestone
XProtect Management Client. For that,in the Management Client, in section “Devices – Cam-
eras”, a camera should be selected. Its name would appear in the top of camera’s property
sheet. To obtain the unique identifier of a camera, the camera should be selected in Man-
agement Client with Control key pressed on the keyboard. With Control key pressed, the

51

https://www.milestonesys.com/solutions/platform/video-management-software/
https://www.milestonesys.com/solutions/platform/video-management-software/
https://viinex.com/

User’s Guide Viinex 3.0

same camera’s property sheet would appear, but in the bottom of that page a readonly text
area should be visible, containing the records “ID=(GUID)” (and probably other values). For
more information on finding camera GUID in Milestone XProtect please refer to the follow-
ing article in Milestone KBase: https://supportcommunity.milestonesys.com/s/article/
finding-camera-GUID. Camera GUID value obtained in this way can be used in Viinex 3.0
configuration, in the video channel selector property channel.id of respective vmschan object.

An example of Viinex 3.0 object for integration with Milestone XProtect is given below:

{
"type": "milestone",
"name": "xp1",
"host": "192.168.0.123",
"auth": ["Admin","12345"]

}

2.2.2 Geutebrück G-Core

An integration object for G-Core VMS by Geutebrück GmbH (https://www.geutebrueck.
com/) is represented in Viinex 3.0 by a configuration in the following format:

{
"type": "geutebrueck",
"name": STRING,
"host": STRING,
"auth": [STRING, STRING]

}

The host and auth parameters are both mandatory. Parameter host should hold the value
of IP address or name of the server where G-Core instance is running. The auth parameter
should represent a pair of strings – the user name and password to connect to G-Core instance.

NB! Geutebrück does not disclose the network protocol for interaction
with G-Core server. The only way for third parties to interact with G-
Core is by means of C++/C# SDK provided by vendor, and in case of
Geutebrück this SDK is only provided for Windows. For that reason,
G-Core integration is only available in Windows builds of Viinex 3.0.

G-Core integration in Viinex 3.0 supports specifying a video stream using either the “Media
channel ID” (in the terminology of G-Core), media channel’s “Global number” (an integer
number), or the human readable name of the channel. For that, properties channel.id,
channel.global_number or channel.name of vmschan object configuration should be used,
respectively:

"channel": {"id":STRING}
"channel": {"global_number":NUMBER}
"channel": {"name":STRING}

52

https://supportcommunity.milestonesys.com/s/article/finding-camera-GUID
https://supportcommunity.milestonesys.com/s/article/finding-camera-GUID
https://www.geutebrueck.com/
https://www.geutebrueck.com/
https://viinex.com/

User’s Guide Viinex 3.0

Although “Media channel ID” can be seen in G-Set interface14, Geutebrück documentation ad-
vises against using this value to permanently identify the camera. The value of “Media channel
ID” is used to identify the camera during the session, throughout all G-Core SDK API calls,
however G-Core documentation says this value may change over time, in contrast with “global
number” (which can only be changed explicitly by a user). To sum up, – the recommended
camera identification method for G-Core intergration in Viinex 3.0 is the identification by
means of global_number parameter.

An example of Viinex 3.0 object for integration with Geutebrück G-Core is given below:

{
"type": "geutebrueck",
"name": "gcore1",
"host": "192.168.0.102",
"auth": ["sysadmin","masterkey"]

}

2.2.3 Qognify (SeeTec) Cayuga

An integration object for Cayuga VMS by Qognify GmbH (former SeeTec), https://www.
qognify.com/products/cayuga/, is represented in Viinex 3.0 by a configuration in the fol-
lowing format:

{
"type": "cayuga",
"name": STRING,
"host": STRING,
"auth": [STRING, STRING],
"port": INT,
"certificate": STRING

}

NB! The integration of Cayuga VMS implementation in Viinex 3.0
requires that two server-side components are installed and enabled at
Cayuga server: the SeeTec Gateway Service and the Transcoding Ser-
vice. For that, respective items should be checked when installing Cayuga
software.
The Transcoding service should be allowed for use on respective Device
Manager instance. For that, one should go in the Cayuga administrative
UI to the Settings – Server – Transcoding Module property page, and
turn on the “Assigned DeviceManager server” checkbox for respective
server.

The host and auth parameters are both mandatory. Parameter host should hold the value
of IP address or name of the server where the instance of Cayga VMS is running. The auth
parameter should represent a pair of strings – the user name and password to connect to the
Cayuga server instance.

14The “Media channel ID” of camera in G-Core is an integer number, as well as the “Global number” identifier.
For consistence with other VMS integrations, the actual type of channel.id parameter is expected to be string.
For G-Core integration this string is converted to integer number by the G-Core integration plugin.

53

https://www.qognify.com/products/cayuga/
https://www.qognify.com/products/cayuga/
https://viinex.com/

User’s Guide Viinex 3.0

The port property of configuration is optional; it may contain the values of port number for
accessing the SOAP endpoint of the Cayuga server. If not specified, the port value is assumed
to be of the value 62000, which is default for this VMS.

The certificate property is optional as well and may serve to specify the path to a file
containing a TLS certificate which should be used to verify the authenticity of the server. The
certificate file should be in the PEM format. If this property is not specified, the authenticity
of the server is not checked.

In order to obtain the certificate from a local server, one may use the following command:

openssl s_client -showcerts -connect 127.0.0.1:62000 </dev/null | \
openssl x509 > cayuga-certificate.pem

The resulting cayuga-certificate.pem then can be copied to the host where Viinex 3.0 is
running.

Cayuga integration in Viinex 3.0 supports specifying a video stream using the name of the
camera and the human-readable number of the video source. For specifying the name of the
camera, the property channel.name of vmschan object configuration should be used:

"channel": {"name":STRING}

For convenience, a selector specified by setting of a string-typed id is treated for Cayuga
integration exactly in the same way as the one with the name being set; but the id semantics
lets the user to specify just the string identifier of a camera as the value for the channel
property:

"channel": STRING

For specifying a human-readable name of video source, the stream selector of one of the fol-
lowing forms should be used:

"channel": {"global_number": INTEGER}
"channel": INTEGER

The human-readable numbers can be assigned in Cayuga Client: for that, one needs to go to
the Configuration Mode, on the right panes select the Company, in the Company pane select
the item “System”, and in the “System” pane select the “Entity numbering”. As a result, a
user interface for assigning human-readable numbers to video sources and other entities would
appear.

An example of Viinex 3.0 object for integration with the Cayuga VMS is given below:

{
"type": "cayuga",
"name": "vms1",
"host": "win10-cayuga",
"auth": ["administrator","pass"]

}

54

https://viinex.com/

User’s Guide Viinex 3.0

2.2.4 Pelco VideoXpert

An integration object for Pelco VideoXpert15 is represented in Viinex 3.0 by a configuration
in the following format:

{
"type": "pelco",
"name": STRING,
"host": STRING,
"auth": [STRING, STRING],
"port": INT,
"certificate": STRING

}

The host and auth parameters are both mandatory. Parameter host should hold the value of
IP address or name of the server where the instance of Pelco VideoXpert VMS is running. The
auth parameter should represent a pair of strings – the user name and password to connect to
the VideoXpert server instance.

The port property of configuration is optional; it may contain the values of port number for
accessing the HTTP RPC endpoint of the Pelco VideoXpert server. If not specified, the port
value is assumed to be of the value 443, which is default for this VMS.

The certificate property is optional as well and may serve to specify the path to a file
containing a TLS certificate which should be used to verify the authenticity of the server. The
certificate file should be in the PEM format. If this property is not specified, the authenticity
of the server is not checked.

Pelco VideoXpert integration in Viinex 3.0 supports specifying a video stream using the name
of the camera and the human-readable number of the video source, and the UUID of the video
source. For specifying the name of the camera, the property channel.name of vmschan object
configuration should be used:

"channel": {"name":STRING}

For specifying a human-readable number of video source, the stream selector of one of the
following forms should be used:

"channel": {"global_number": INTEGER}
"channel": INTEGER

The human-readable numbers can be assigned in Pelco VideoXpert: for that, one needs to go
to the VxOpsCenter, on the right panes select the Content panel, in the Content panel select
the tab “Sources”, and in the table on that tab each item can be edited (via the context menu),
to set the “Number value” in the “Edit source” dialog box. This number value can be used to
identify the respective connected Pelco VideoXpert VMS channel in Viinex 3.0 configuration.

An example of Viinex 3.0 object for integration with the Pelco VideoXpert VMS is given below:

{
"type": "pelco",

15https://www.pelco.com/products/video-management-solution-videoxpert/vxpro/

55

https://www.pelco.com/products/video-management-solution-videoxpert/vxpro/
https://viinex.com/

User’s Guide Viinex 3.0

"name": "vms1",
"host": "test-pelco",
"auth": ["admin","Admin12345"]

}

2.2.5 Bosch BVMS

An integration object for Bosch BVMS16 is represented in Viinex 3.0 by a configuration in the
following format:

{
"type": "bosch",
"name": STRING,
"host": STRING,
"password": STRING |
"auth": [STRING, STRING],
"port": INT,
"certificate": STRING,
"port_rtsp": INT,
"auth_rtsp": [STRING, STRING],
"timezone": INT | STRING

}

The only mandatory parameter here is host which should specify an IP address or a resolvable
name of the server where an instance of BVMS is running. Note that Viinex 3.0 integrates
Bosch BVMS in terms of “VRM instances”, i.e. each Video Recording Manager should be
described in Viinex 3.0 configuration as a separate VMS instance.

Besides the host parameter, it is required that either the property password is specified, or
the property auth and, optionally, also the auth_rtsp is specified. This set of properties works
as described below:

• if only the property password is specified, then the credentials used for communication
with BVMS are – username “srvadmin” and the given password for RCP+ over CGI
communication, and username “user” and the given password for RTSP communication.
This works with the default setup.

• if the property rtsp_auth is specified (a pair of strings representing a user name and a
password), then these credentials are used for RTSP communication. Other credentials
are not used for RTSP in that case.

• if the property auth is specified (a pair of strings representing a user name and a pass-
word), then these credentials are used for RCP+ over CGI communication with BVMS.
Other credentials are not used for RCP+ in that case.

• if the property auth is specified, and neither password nor auth_rtsp are specified, then
the password from this auth property is also used for RTSP interaction, however with
that password the user name “user” is used in RTSP protocol.

16https://www.boschsecurity.com/xc/en/solutions/management-software/bvms/

56

https://www.boschsecurity.com/xc/en/solutions/management-software/bvms/
https://viinex.com/

User’s Guide Viinex 3.0

To keep the configuration simple, it is recommended that either only the property password
is specified (and user names are substituted implicitly), or both the properties auth and
auth_rtsp are specified with explicitly mentioned user names.

The port and port_rtsp properties of configuration are both optional; each of them may
contain the value of port number for accessing the HTTPS endpoint for RCP+ over CGI
interaction with the VRM instance, and the port number for accessing that VRM instance
over RTSP protocol, respectively. If either of that properties is unspecified, the port value is
assumed to be of the value 443, and port_rtsp is assumed to be of value 554, which are the
default values for a Video Recording Manager in the Bosch BVMS.

The certificate property is optional as well and may serve to specify the path to a file
containing the TLS certificate which should be used to verify the authenticity of the server
when communicating via RCP+ over CGI over HTTPS. The certificate file should be in the
PEM format. If this property is not specified, the authenticity of the server is not checked.

An optional property timezone may contain either an integer number of minutes – the offset
of timezone of the server where Bosch BVMS instance is hosted from the UTC timezone, –
or it can contain a string in format ±HHMM to specify timezone offset from UTC in hours and
minutes. The following symbolic names for timezones are accepted as well: "UTC", "UT",
"GMT", "EST", "EDT", "CST", "CDT", "MST", "MDT", "PST", "PDT"17. If the timezone
property is omitted, it is assumed that Viinex 3.0 instance and Bosch BVMS instance are
running in the same time zone. If these timezones actually differ, then it is important that
Viinex 3.0 instance knows what timezone BVMS uses; otherwise the video archive playback
requests and the video archive search requests with an interval specified would produce incorrect
results.

Bosch BVMS integration in Viinex 3.0 supports specifying a video stream using the name of
the camera and the human-readable number of the video source. For specifying the name of
the camera, the property channel.name of vmschan object configuration should be used:

"channel": {"name":STRING}

For specifying a numerical identifier of video source, the stream selector of one of the following
forms should be used:

"channel": {"global_number": INTEGER}
"channel": INTEGER

An example of Viinex 3.0 object for integration with the Bosch BVMS is given below:

{
"type": "bosch",
"name": "vms1",
"host": "win10-bosch",
"password": "!Admin12345"

}
17These are all U.S. timezones. It’s currently impossible to properly specify a timezone with daylight savings

outside of U.S. in Viinex config, but luckily this is not required for Bosch BVMS integration. Instead, a correct
time offset from the UTC timezone in standard time (“winter” time, in the northern hemisphere) needs to be
specified, because Bosch BVMS accepts and produces the temporal values measured as the number of seconds
since January 1st, 2000 in its local time zone – which means that the offset from UTC timezone as per this
date only needs to be known to perform conversion between BVMS timestamps and UTC time, conventional
throughout Viinex 3.0 API.

57

https://viinex.com/

User’s Guide Viinex 3.0

2.2.6 DSSL Trassir

An integration object for DSSL Trassir VMS (https://trassir.com/) is represented in Vi-
inex 3.0 by a configuration in the following format:

{
"type": "trassir",
"name": STRING,
"host": STRING,
"port": INT,
"auth": [STRING,STRING],
"certificate": STRING

}

In the above, property host should contain the IP address or a resolvable host name of the
server where Trassir instance is being run. Property port should contain the TCP port which
is used by Trassir to expose its API. Pair of strings under the property auth should contain
the login and password which should be used by Viinex 3.0 to authenticate at the Trassir
instance. Optional property certificate may contain the path to a local file holding the
TLS certificate of the Trassir instance. If certificate property is omitted, Viinex 3.0 would
connect to Trassir without checking the certificate. This scenario should be avoided in public
networks.

Trassir integration in Viinex 3.0 supports specifying a stream, along with id or name of a
video channel, for the purpose of video source identification in vmschan objects configuration.
For that, the stream property may be added to the value of channel field of vmschan object
configuration:

"channel": {"id":STRING, "stream":"main" | "sub"}
"channel": {"name":STRING, "stream":"main" | "sub"}

Only the id and name are supported for video source identification within Trassir instance.
The global numberic identifiers are not present for video sources in Trassir VMS.

An example of Trassir object configuration is given below:

{
"type": "trassir",
"name": "trassir1",
"host": "192.168.0.123",
"port": 8080,
"auth": ["Admin","12345"],
"certificate": "c:\\temp\\trassir1.crt"

}

2.2.7 Macroscop and Eocortex

An integration object for Macroscop18 VMS is represented in Viinex 3.0 by a configuration in
the following format:

18https://macroscop.com/produkty/programma-dlya-ip-kamer. One may find that the same integration
is also compatible with a VMS which is distributed under brand Eocortex, https://eocortex.com/.

58

https://trassir.com/
https://macroscop.com/produkty/programma-dlya-ip-kamer
https://eocortex.com/
https://viinex.com/

User’s Guide Viinex 3.0

{
"type": "macroscop",
"name": STRING,
"host": STRING,
"auth": [STRING, STRING],
"port": INT,
"certificate": STRING

}

The host and auth parameters are both mandatory. Parameter host should hold the value of
IP address or name of the server where the instance of Macroscop VMS is running. The auth
parameter should represent a pair of strings – the user name and password to connect to the
Macroscop server instance.

The port property of configuration is optional; it may contain the values of port number for
accessing the HTTP RPC endpoint of the Macroscop server. If not specified, the port value
is assumed to be of the value 8080, which is default for this VMS.

The certificate property is optional as well and may serve to specify the path to a file
containing a TLS certificate which should be used to verify the authenticity of the server. The
certificate file should be in the PEM format. If this property is not specified, the authenticity
of the server is not checked.

Macroscop integration in Viinex 3.0 supports specifying a video stream using the name of
the camera and the human-readable number of the video source, and the UUID of the video
source. For specifying the name of the camera, the property channel.name of vmschan object
configuration should be used:

"channel": {"name":STRING}

For specifying a UUID of video source, the stream selector of one of the following forms should
be used:

"channel": {"id": STRING}
"channel": STRING

where STRING should contain the UUID of the camera. In addition, in both forms the
"stream" property may be used which, as usual, may contain string value "main" or "sub".

An example of Viinex 3.0 object for integration with the Macroscop VMS is given below:

{
"type": "macroscop",
"name": "vms1",
"host": "test-macroscop",
"auth": ["root",""]

}

Note that Macroscop VMS does not provide much of a network addressing information via
its HTTP API, and for that reason it’s not possible to determine which endpoints and ports
should be used to connect to Macroscop instances in a federated setup. As a consequence,
for a federated Macroscop system with multiple servers it is required that every such server

59

https://viinex.com/

User’s Guide Viinex 3.0

is descibed in Viinex 3.0 configuration, and the vmschan objects should be properly linked to
their respective VMS instances. In other words, despite the Macroscop configuration may be
a federation of instances, – these instances should be treated like isolated Macroscop instances
for the purpose of configuring them in Viinex 3.0.

2.2.8 ITV|AxxonSoft Intellect

An integration object for ITV|AxxonSoft Intellect VMS (https://www.itv.ru/products/
intellect/) is represented in Viinex 3.0 by a configuration in the following format:

{
"type": "intellect",
"name": STRING,
"host": STRING,
"port": INT,
"timezone": STRING | INT

}

The property host should contain the IP address or a resolvable host name of the server where
Intellect instance is being run. Property port is optional and may contain the number of TCP
port of video.run server module. If not specified, the value of 20900 of port number is assumed.
Optional property timezone may contain either an integer number of minutes – the offset of
timezone of the server where Intellect is hosted from the UTC timezone, – or it can contain
a string in format ±HHMM to specify timezone offset from UTC in hours and minutes. The
following symbolic names for timezones are accepted as well: "UTC", "UT", "GMT", "EST",
"EDT", "CST", "CDT", "MST", "MDT", "PST", "PDT". If the timezone property is omitted,
it is assumed that Viinex 3.0 instance and Intellect instance are running in the same time zone.

Note that Intellect integration in Viinex 3.0 does not support identification of video channels
being linked (vmschan object) in any other way except by the global_number. In other words,
the objects of type vmschan linked with intellect should have the configuration property
channel set to an integer number – the numberic identifier of respective “camera” object in
Intellect configuration.

An example of Intellect object configuration is given below:

{
"type": "intellect",
"name": "int1",
"host": "192.168.0.117"

}

2.2.9 Plugins for other VMS integrations

Besides the video management systems mentioned in this section, Viinex 3.0 is open for inte-
gration of other VMS which can be added by independent parties. For that, the mechanism
of loadable plugins is being used, similar to the one for H264 video sources described in sec-
tion 2.1.3. As the matter of fact, the API for H264 video source plugin is a part of the API
for integration of video management systems. For more information on that API please refer
to section 5.4 of this document.

60

https://www.itv.ru/products/intellect/
https://www.itv.ru/products/intellect/
https://viinex.com/

User’s Guide Viinex 3.0

The configuration for the VMS whose integration is available in such plugin should have the
following form:

{
"type": "vmsplugin",
"name": STRING,
"library": STRING,
"factory": STRING,
"init": JSON

}

The mandatory library and factory properties instruct Viinex 3.0 to dynamically load a
specific DLL (shared object on Linux), and find the specific symbol in it (the one with name
specified in the factory property).

The init property is an arbitrary JSON value which is passed into the VMS integration plugin
factory as is. It should contain the information necessary for the plugin to connect to the VMS
instance: the address of a server, port numbers, credentials, and so on. The contents of this
value depends on the specific VMS.

As an example, the Geutebrück G-Core integration is actually implemented as a plugin, and can
be used by the following config section, as an equivalent of the example given in subsection 2.2.2:

{
"type": "vmsplugin",
"name": "gcore1",
"library": "vmsplugins.dll",
"factory": "create_geutebrueck_vmsplugin",
"init": {

"host": "test-gcore",
"auth": ["sysadmin", "masterkey"]

}
}

Here, the vmsplugins.dll is the name of a DLL actually shipped with Viinex 3.0 distribution
on Windows, which contains the implementation of VMS integration plugin for G-Core. Re-
spectively, create_geutebrueck_vmsplugin is the name of the factory function exported from
the vmsplugins.dll to create the VMS plugin instance for G-Core. Compare the content of
init object with the example configuration for G-Core shown in subsection 2.2.2: it specifies
the same configuration keys and values, in this case host and auth.

After the plugin is implemented and the respective object is created in Viinex 3.0 configuration,
the rest of the logic remains the same as for other VMS integrations: in order to access a specific
video channel from Viinex 3.0, the vmschan object should be created, specifying the channel
selector information, and that vmschan object should then be linked with the vmsplugin object
in the links section of Viinex 3.0 configuration document.

61

https://viinex.com/

User’s Guide Viinex 3.0

2.3 Video analytics

2.3.1 Vehicle license plate recognition

License plates text recognition engine

Viinex 3.0 implements the functionality for vehicle license plate recognition on still images as
well as on a video. License plate recognition on still images is implemented in an object that
can be used to either perform such recognition when images come from external source via
HTTP API, or when they come from a video source, or both.

Configuration object for an instance of the LPR is denoted by the object type alpr. An
example of such configuration object is given below:

{
"type": "alpr",
"name": "alpr0",
"mode": "image",
"datapath": "share/vnxlpr/",
"country": "DEU",
"workers": 4,
"shm": 32

}

Configuration parameters mode, datapath and workers are common for analytics engines and
are described in section 2.4.6. The rest of parameters are specific to license plate recognition
engine, and their description is given below.

The mandatory field country should contain a 3-letter ISO code for country which has issued
the license plates to be recognized. Please contact Viinex 3.0 support team to get most recent
information on what countries are supported in vehicle license plate recognition engine.

The transliterate field is optional and provides the possibility to transliterate recognition
result to a different character set. For instance, this might be useful if the recognition result
is compared against a database (a whitelist or a blacklist), where the license plate numbers
are stored written in cyrillic letters. If "transliterate": "cyrillic" is specified, then
the latin letters in recognition result are automatically replaced with cyrillic letters of similar
shape, like "H (latin h capital)" vs "Н (cyrillic н capital)" and so on. If transliterate option
is not set, or its specified value is "latin", then the recognition results are produced with latin
letters in them.

License plates text recognition for video

To perform license plates text recognition on a data from a video source, the Viinex 3.0 object
of type alprvideo is used.

The alprvideo object is essentially a controller which takes the video stream from a video
source, exposes a simple API in a web server to receive a request for recognition, and when such
request is received via HTTP API (see section 3.16.2), it performs license plate text recognition
on a buffered sequence of video frames using an instance of alpr object which is functioning
with mode parameter set to “video” or “any”.

62

https://viinex.com/

User’s Guide Viinex 3.0

Note that this is necessary for alprvideo object to function that it is linked (in the links
section of configuration document) with an instance of alpr object, serving as the license
plates text recognition engine, and a video source to take the data for analysis from.

Configuration section for alprvideo object should have the form similar to the following
example:

{
"type": "alprvideo",
"name": "alprraw0",
"preprocess": 1.5,
"postprocess": 1.0,
"skip": "non_idr",
"confidence": 40

}

The complete list of configuration parameters and their detailed description is given in sec-
tion 2.4.7.

2.3.2 Freight container code recognition

Freight container code recognition engine

Viinex 3.0 implements the functionality for recognition of freight container identification code
on video. This functionality is organized in fashion similiar to the objects for vehicle license
plates recognition, – there are also an “engine” object for container code recognition algorithm
and workers, and video-related objects for processing each video channel on a specific engine.

Configuration object for an instance of a freight container identification code recognition19

engine is represented by the object type cidr. An example of such configuration object is
given below:

{
"type": "cidr",
"name": "cidr0",
"mode": "video",
"datapath": "share/vnxcidr/",
"workers": 2,
"shm": 128

}

Configuration parameters mode, datapath, workers and shm are common for analytics engines
and are described in section 2.4.6.

License plates text recognition for video

To perform license plates text recognition on a data from a video source, the Viinex 3.0 object
of type cidrvideo is used.

19An abbreviation “CIDR” may be used thoughout this document. “CIDR” stands for Container IDentification
code Recognition.

63

https://viinex.com/

User’s Guide Viinex 3.0

The cidrvideo object is essentially a controller which takes the video stream from a video
source, exposes a simple API in a web server to receive a request for recognition, and when
such request is received via HTTP API (see section 3.17.2), it performs freight container code
text recognition on a buffered sequence of video frames using an instance of cidr object which
is functioning with mode parameter set to “video” or “any”.

Note that this is necessary for cidrvideo object to function that it is linked (in the links
section of configuration document) with an instance of cidr object, serving as the freight
container code recognition engine, and a video source to take the data for analysis from.

Configuration section for cidrvideo object should have the form similar to the following
example:

{
"type": "cidrvideo",
"name": "cidrcam1",
"skip": "while_busy",
"preprocess": 1.0,
"postprocess": 1.0

}

The complete list of configuration parameters and their detailed description is given in sec-
tion 2.4.7.

2.3.3 Face detection

Face detection engine for still images

Viinex 3.0 implements the functionality for face detection on still images as well as on a video.
Face detection on still images is implemented in an object that can be used to either perform
such detection when images come from external source via HTTP API, or when they come
from a video source, or both.

Configuration object for an instance of the face detector is denoted by the object type facedet.
An example of such configuration object is given below:

{
"type": "facedet",
"name": "facedet0",
"mode": "any",
"datapath": "share/facedet/",
"workers": 2,
"min_size": 0.05,
"max_size": 0.9

}

Configuration parameters mode, datapath and workers are common for analytics engines and
are described in section 2.4.6.

The min_size and max_size parameters define the scales at which the input image is searched
for the faces. Given the above example, the face detection engine is set up to search for the

64

https://viinex.com/

User’s Guide Viinex 3.0

faces in the range from 5% to 90% of image size. For instance, if the input image is of size
1280× 720, the sizes of faces to search for wolud be from 36 to 648 pixels.

The important thing about this range is that it heavily influences the usage of CPU resources
by the face detection engine. This is because the search for faces at different scales is performed
by means of a number of sequential steps each consisting of the re-scaling of the input image,
and performing the search of a faces of one fixed size at given rescaled image. The steps
performed closer to the min_size boundary are more computation-intensive than those closer
to the max_size boundary (that is — the detection of smaller faces requires more CPU cycles
than the detection of larger ones). It is therefore recommended that in production environment
the range [min_size, max_size] is made as narrow as possible, if the range of scales at which
the faces should be detected is known in advance.

Face detection for video

To perform face detection on the data from a video source, the Viinex 3.0 object of type
facedetvideo is used.

The facedetvideo object is the object controller which takes the video stream from a video
source, exposes a simple API in a web server to receive a request for face detection, and when
such request is received via HTTP API (see section 3.20.2), it performs face detection on a
buffered sequence of video frames using an instance of facedet object which is functioning
with mode parameter set to “video” or “any”.

Note that this is necessary for facedetvideo object to function that it is linked (in the links
section of configuration document) with an instance of facedet object, serving as the face
detection engine, and a video source to take the data for analysis from.

Configuration section for facedetvideo object should have the form similar to the following
example:

{
"type": "facedetvideo",
"name": "facedetraw0",
"preprocess": 0,
"postprocess": 10,
"skip": "while_busy",
"confidence": 80

}

The complete list of configuration parameters and their detailed description is given in sec-
tion 2.4.7.

2.3.4 Railcar identification number recognition

Viinex 3.0 has a built-in support for coordination and controlling of video analytics engine
processes’ in order to perform recognition of railcar identification number20. Respective object
type is ridrcons. An example for ridrcons configuration is given below:

{
20Only relevant for 1520 mm gauge railways.

65

https://viinex.com/

User’s Guide Viinex 3.0

"type": "ridrcons",
"name": "ridrcons1",
"datapath": "share/vnxrlw",
"shm": 128,
"check_digit": "pick",
"channels": {

"cam1": {
"min_width": 0.05,
"roi": [0,0,1,1]

},
"cam2": {

"min_width": 0.05,
"roi": [0,0,1,1]

}
}

}

The datapath parameter should contain the path to analytics engine data files, which should
be share/vnxrlw on Windows. The channels section of configuration should contain an assi-
ciative array mapping the name of video sources connected to the ridrcons instance to a JSON
object describing the geometry of image on each video source. In particular, the min_width
parameter specifies the minimum width of railcar identification number (size relative to the
width of the image), while the roi specifies the region of interest – a rectangle on the image
where the analytics should be performed (in form of consecutive 4 floating point numbers,
– left, top, right and bottom of the rectangle, measured relative to image width and image
height).

An optional parameter shm is common for video analytics engines and provides the means to
specify the size of RAM which is allocated as a shared area between Viinex 3.0 core and the
video analytics worker process. The value for this parameter should be an integer number
(size of shared RAM in megabytes). If the shm property is omitted, the default value of 128
MBytes is assumed. Depending on image size, input framerate and processing speed it may
be necessary to adjust this value.

An optional parameter check_digit may take one of three string values — "ignore", "verify"
and "pick". This parameter alters the behavior of video analytics engine and the results
consolidation algorithm with respect to the awareness of the value of checksum digit in the
recognition results. If the check_digit parameter value is "ignore", the recognition engine
pays no attention to the checksum digit of railcar ID number, and the results consolidation
is solely based on the confidence of the recognition hypothesis. If the parameter value is
"verify", the recognition engine still does not use the checksum digit to order the recognition
hypotheses, however the checksum is accounted for during the consolidation: the hypotheses
with valid checksum are preferred in front of those with invalid checksum, – no matter what
the confidence value is. If the check_digit parameter value is "pick", then checksum digit
is being used both at railcar ID number recognition level and at results consolidation level.
When the check_digit parameter is omitted, the default value of "verify" is assumed.

The ridrcons object should be linked with video sources in the links section of configuration.
It should also be linked with other objects, like web server or controlling script, in order to
implement the necessary behaviour. Typically the ridrcons is used in conjunction with a
controlling script which, in its turn, may process specific events from a GPIO controller, or a
user calls from HTTP API, and respectively control the ridrcons object using the Updateable
interface.

66

https://viinex.com/

User’s Guide Viinex 3.0

2.4 Common configuration sections

For some objects, certain configuration fields share the requirements for their structure. All of
such cases above in the description of particular object refer to respective paragraphs of this
section.

2.4.1 RTP transport priority

For RTP transport negotiation, an object may define the priority for RTP transport protocols.
The configuration object member for defining such priority has the following structure:

"transport": [TRANSPORT_1, ..., TRANSPORT_N]

where TRANSPORT_k are strings and may take one of the following values:

• "udp" – for RTP over UDP unicast,

• "tcp" – for RTP over RTSP over TCP (i.e. interleaved RTP data in a RTSP connection),

• "mcast" – for RTP over UDP multicast.

2.4.2 Credentials database

This paragraph describes the section of configuration document that is common for HTTP
and RTSP servers built into Viinex 3.0, and defines the database of credentials to authenticate
clients accessing that servers.

An example for the credentials database section is given below:

"auth": {
"require": true,
"realm": "ViinexAuth",
"htdigest": "C:/htdigest.txt",
"accounts": [

{
"type": "password",
"login": "admin",
"digest": "510070c93040af4bef5e6d311d26af74"

},
...
{

"type": "apikey",
"key": "remoteagent1",
"secret": "foobarsecret1"

},
...

]
}

67

https://viinex.com/

User’s Guide Viinex 3.0

There are two mandatory parameters, require and realm, and two optional parameters,
htdigest and accounts.

The require parameter defines whether the server should require clients’ authentication at
all. Setting it to false permits the anonymous access to the server instance.

When the parameter require is set to true, the server checks its clients’ authentication
against the credentials database stored under parameter accounts, or referred to by parameter
htdigest, or both.

The accounts parameter is a simple credentials database and should have the form of JSON
array of objects. Each object in that array should have one of two following forms:

{
"type": "apikey",
"key": "STRING",
"secret": "STRING"

}

or

{
"type": "password",
"login": "STRING",
"digest": "STRING"

}.

The first form, with "type":"apikey", stores the account name (in member "key") and its
respective plain-text password (in member "secret"). This is unsafe way of storing credentials,
and it is intended for use when client is a trusted programmatic component (an agent, a robot),
– not a human.

The second form, with "type":"password", stores the account name (in member "login")
and the “digest” of account password (in member "digest"). The “digest” part is an MD5
hash of account name, the realm and account password, all separated by semicolon character
‘:’, — according to the protocol for Digest Access Authentication described in [13]:

𝐻𝐴1 = 𝑀𝐷5(𝑙𝑜𝑔𝑖𝑛 : 𝑟𝑒𝑎𝑙𝑚 : 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑).

For instance, one may compute the digest for account named user and password 12345 with
realm ViinexAuth using the following UNIX command line:

$ echo -n "user:ViinexAuth:12345" | md5sum
e488a5401e549bcb46e59da2d065d433 *-

$ echo -n "guest:ViinexAuth:54321" | md5sum
6e23b775d34d9c1119779ce57d6d47e7 *-

This allows the server for checking of user’s credentials via HTTP and RTSP protocol without
knowing the account’s plain text password.

The htdigest parameter is another option to refer to credentials database. When specified,
this parameter should point to a locally accessible text file produced by command-line utility

68

https://viinex.com/

User’s Guide Viinex 3.0

htdigest(1) usually coming with apache2-utils package. The file formed by htdigest
utility is a text file consisted of lines, where each row describes one account’s credentials. The
description includes account name, the realm and the digest, computed as described above.
For instance, one may issue the following commands:

$ htdigest -c ./htdigest.txt ViinexAuth user
Adding password for user in realm ViinexAuth.
New password: 12345
Re-type new password: 12345

$ htdigest ./htdigest.txt ViinexAuth guest
Adding user guest in realm ViinexAuth
New password: 54321
Re-type new password: 54321

$ cat ./htdigest.txt
user:ViinexAuth:e488a5401e549bcb46e59da2d065d433
guest:ViinexAuth:6e23b775d34d9c1119779ce57d6d47e7

Using the htdigest option in Viinex 3.0 configuration is a convenient way of avoiding the
need for changing the configuration files when a user changes his password. Additionaly, the
htdigest utility is de-facto standard and is supported on many platforms, including Windows
and Linux.

If htdigest parameter is provided, it should point to an existing file of correct format. Failure
to read and parse specified file will result in an error at Viinex 3.0 startup. Viinex 3.0 also
does not recognize the changes to htdigest file while running: in order for such changes to take
effect, the Viinex 3.0 instance should be restarted.

If both accounts and htdigest options are provided, the resulting credentials database would
be the union of set of records provided in accounts array and the content of referred htdigest
file.

In both cases the realm is required to compute digest. Realm is an arbitrary string value that
should be provided in the parameter realm. Realm is usually used to distinguish records in
credentials databases: records with different realms are not interchangeable, and the credentials
computed with some realm is useless if it mismatches the realm used by the server. Note that
there can be only one realm for one instance of the Viinex 3.0 HTTP or RTSP server (the one
that is specified by realm parameter), while there can be records with many different realms
stored in one htdigest file. Viinex 3.0 ignores the records in htdigest file with realm string
mismatching the value of realm parameter specified in the server configuration.

2.4.3 Raw video device operation mode

This subsection specifies the syntax of raw video device operation mode description, which is
referenced in both configuration of a raw video source in section 2.1.4, and reply to raw video
device discovery request in section 3.3.7.

The syntax for raw video device mode description JSON object is given below:

{
"pin": STRING,

69

https://viinex.com/

User’s Guide Viinex 3.0

"colorspace": STRING,
"bpp": INT,
"planes": INT,
"framerate": FLOAT,
"limit_framerate": BOOLEAN,
"size": [INT,INT],

"pixel_clock": INT,
"gain_boost": BOOLEAN,
"exposure": FLOAT | "auto",
"flip_horizontal": BOOLEAN,
"flip_vertical": BOOLEAN,
"awb": STRING

}

The first six properties and the eighth one are mandatory (should be given when the mode
subsection is authored in the configuration of rawvideo object, and are always given in response
to raw video device discovery calls).

The pin parameter specifies the identifier of the logical “pin” on the device to connect to. The
semantics for this depends on the specific device and its driver.

The colorspace property specifies the colorspace and format (in-memory pixel layout) of the
image buffer. The following values are supported for colorspace: "I420", "YV12", "NV12",
"NV21", "YUY2", "YUYV", "UYVY", "YVU9", "RGB".

The colorspace defines both colorspace (YUV), format (planar/packed), bits per pixel value
and pixel data layout in 8 cases of 9, the exception is value RGB, when the colorspace is RGB,
but the number of planes and the bits per pixel value should be explicitly specified by planes
and bpp parameters. These are only mandatory if colorspace equals RGB; otherwise their
values are ignored and effective number of planes and bits per pixel value are inferred from
specified YUV format. For more information on YUV formats see [14].

The size parameter should be a 2-element array of integers (a tuple) and specifies the size of
image ([width, height]).

The framerate is a floating-point number specifying the framerate for the video grabber.
The semantics of this property differs depending on the context. In the result of rawvideo
device discovery calls, the framerate contains the value of supprted framerate as reported by
the device driver. In the configuration for raw video device, Viinex 3.0 attempts to find the
mode with a framerate value closest to what is given in the configuration, having all other
mandatory parameters matched. That is, this is the only mandatory parameter that may
be adjusted by user in configuration with respect to what is output as the result to device
discovery call. Note that Viinex 3.0 does not pass the adjusted value to the driver, because
the latter may consider an adjusted value for framerate as unsupported (depending on driver’s
implementation). Instead, Viinex 3.0 searches for the framerate value, within the list that are
explicitly reported by driver as supported, nearest to the framerate value specified by user.

This is closely connected with limit_framerate parameter, which can only be given in raw
video device configuration. By default (when not given), Viinex 3.0 interprets as if this value is
set to false. This means that no additional throttling is performed after the data is acquired
from the device driver, and every frame acquired is passed futher to overlay, video encoder,
and to linked objects. Then the limit_framerate parameter is set to true, Viinex 3.0 checks
whether the timestamps assigned to neighbouring frames acquired from driver differ enough
so that the framerate specified by the user would not be exceeded if such inter-frame period

70

https://viinex.com/

User’s Guide Viinex 3.0

persists. If this is not the case, i.e. the timestamps of neighbouring frames are too close, – the
second frame gets skipped by Viinex 3.0. As a result, limit_framerate turns on the “software
throttling” to limit the effective framerate by the value given in the framerate property.

Optionally, image registration parameters can be specified with fields pixel_clock, gain_boost
exposure, flip_horizontal, flip_vertical and awb. Pixel clock, if supported, specifies the
frequency of data transimission from camera (an integer number, in MHz). Note that de-
pending on the equipment and the driver this value may effectively override the framerate.
gain_boost, if supported, is a boolean value specifying whether the additional gain should
be applied to the acquired signal befor the digitizing. The exposure is a floating-point value
in the range of [0.0, 1.0] which is linearly mapped to allowed range for exposure reported in
the runtime by device driver. That is, 0.0 means the smallest possible exposure time, and
the value 1.0 means the highest possible exposure time. Setting the exposure property to a
floating-point value fixes the exposure. Alternatively, the string value "auto" can be specified
for exposure which means the request for auto-exposure functionality of the camera. The
flip_horizontal and flip_vertical parameters allow for mirroring the image horizontally
or vertically. The awb parameter can be used to specify the automatic white balance algorithm
to be used by camera (if supported). Valid values for this parameter are strings

"off"
"greyworld"
"kelvin"

The value "off" means that AWB algorithm is not applied. The value "greyworld" means
that the “Grey World” algorithm should be applied for finding the white balance (i.e. the RGB
gains are controlled so that the average of color components components have the same value).
The value "kelvin" means that AWB algorithm constols RGB gains so that resulting image
has some predefined color temperature.

If any of optional parameters is omitted from the configuration of rawvideo object, the cor-
responding settings are not performed (left to default or a previous state, depending on the
device driver implementation). If any of that parameters is specified but not supported by the
device (which is often the case for pixel_clock, gain_boost and awb, because these properties
are only available via vendor-specific extenstions to DirectShow), Viinex 3.0 may log a warning
but proceeds.

2.4.4 Video encoder

The encoder subsection defines the configuration of H.264 video encoder associated with a
raw video source or with a video renderer. The encoder subsection has four mandatory fields:
type, quality, profile and preset. The whole encoder has therefore the following syntax:

"encoder": {
"type": "cpu",
"quality": STRING,
"profile": STRING,
"preset": STRING,
"dynamic": BOOLEAN

}

The type defines the type of encoder implementation. Allowed value for that parameter is
"cpu", which stands for software encoder implementation.

71

https://viinex.com/

User’s Guide Viinex 3.0

profile specifies the H.264 profile for encoder to function in. Allowed values for this property
are: "baseline", "main" and "high".

The quality defines the quantization threshold used by encoding algorithm to throw away the
image details while encoding. This affects percieved image quality, resulting stream size, and
encoding speed. The acceptable values for quality are:

"best_quality"
"fine_quality"
"good_quality"
"normal"
"small_size"
"tiny_size"
"best_size"

The value best_quality means that most details should be preseved while encoding, while
the value best_size means that most details should be discarded while encoding.

The preset parameter specifies the settings of the encoder, in terms of CPU resource con-
sumption. Allowed values for this property are:

"ultrafast"
"superfast"
"veryfast"
"faster"
"fast"
"medium"
"slow"
"slower"
"veryslow"

These values are listed in order of increase of CPU time required to encode a sequence of
frames. On the other hand, the more CPU time is spent on encoding, the better compession
rate can be achieved. Note that the preset parameter is set “after” the quality parameter
is fixed. That is, having the quality chosen and fixed, one may choose how much time to
spend encoding what should be encoded at chosen quality, – and this is done with preset
parameter. To sum up, preset does not affect the resulting image quality, – but the CPU time
consumption (ultrafast is most lean, veryslow is most expensive), and resulting compression
rate (ultrafast is worst, veryslow is best).

There is also an optional boolean parameter dynamic in the configuration of an encoder, which
indicates whether the encoding of an output video stream should be performed permanently
(when dynamic set to false), or should an encoder only process the stream when at least
one client to the encoded video stream exist, – that is, the stream is requested via RTSP or
WebRTC or HLS, or it is being written to a video archive. The default value of dynamic
property is false.

2.4.5 Overlay

The overlay functionality includes the ability to put a static image or HTML page on top
of video, and to modify them dynamically over the time via HTTP API described in 3.9.
Viinex 3.0 uses the wkhtmltoimage to render HTML. wkhtmltoimage is distributed with

72

https://viinex.com/

User’s Guide Viinex 3.0

Viinex 3.0 as a separate binary (Viinex 3.0 interacts with that binary via pipes, running
wkhtmltoimage process whenever an overlay change is requested).

The overlay configuration section is common for raw video source and video renderer object.
It should be a JSON object,

"overlay": {
"left": INTEGER,
"top": INTEGER,
"colorkey": [INTEGER, INTEGER, INTEGER],
"initial": STRING

},

– in which case it defines one overlay, – or an array of JSON objects,

"overlay": [
{

"left": INTEGER,
"top": INTEGER,
"colorkey": [INTEGER, INTEGER, INTEGER],
"initial": STRING

},
...

],

in which case it defines several overlays of which every one can be managed independently from
others.

The three mandatory values in JSON object(s) within overlay subsection are: left and top
which specify the origin (left-top corner) for the overlay bitmap with respect to the left-top
corner of the video, – and the colorkey. The latter should be a tuple of 3 integers (represented
as JSON array of 3 elements) in range from 0 to 255. These 3 integers specify the color in
the overlay bitmap or HTML page to be used as “transparent”. Given that color, Viinex 3.0
combines the video and the overlay so that pixels on the overlay image or HTML page, having
that colorkey color value, are not drawn over video, while all other pixels of overlay image
are drawn, occluding the image.

The initial parameter is optional and specifies the overlay content to be set over the video
at Viinex 3.0 startup. This property may hold a path to HTML or BMP file. Viinex 3.0
automatically recognizes the type of file (based on extension) and performs HTML rendering,
if necessary.

In case if overlay section is an array, corresponding to multiple overlays, — each of them has its
own geometry, color key settings, and the content of a specific overlay can be set independently
from other overlays. It is recommended that multiple smaller overlays are used instead of one
of a bigger size, for instance, if the goal is to place some text in the opposite corners of the
image: the use of several smaller overlays gives better performance.

Note that when rendering HTML, especially if text written in TrueType font, wkhtmltoimage
uses operating system-dependent rendering algorithms, which include anti-aliasing techniques.
This has an effect of mixing the colors of text and the color of background on the edges of
the text glyphs. The pixels at the edge of the glyph would have such mixed color which
may contain a significant fraction of background tone (“hue”), while being not equal to the
background. This is important if the background color equals the colorkey value specified in

73

https://viinex.com/

User’s Guide Viinex 3.0

the configuration. Viinex 3.0 cannot tell the pixels which were mixed with background color
by the renderer from those which were not (this can only be done inside the text renderer, or
with an additional “alpha” channel in the image). Viinex 3.0 treats such pixels of mixed color
as non-background (and therefore non-colorkey, non-transparent). Taking this into account, it
is not recommended to use colorkey value that very much differs from text color value. Instead,
it’s better to choose colorkey close to the text color (not equal, but close). For instance, for
text color #000000 ([0,0,0]) it is recommended to use colorkey and background color value
#010101 ([1,1,1]): the difference is sufficient for Viinex 3.0 to distinguish the background
from foreground, while the pixels of “antialiased” colours mixed between #000000 and #010101
won’t catch an eye. In contrast, if one chooses #00ff00 value for the HTML background and
the colorkey ([0,255,0]), the edges of black glyphs will inevitably retain the green colour,
which would not be exactly equal to colorkey, but may come arbitrarily close (like [0,230,0])
and will be percieved as bright green pixels on the edges of black glyphs. To sum up, it
is recommended to choose the “transparent background” color (colorkey) close to (although
different from) the font color value.

There is one more hint for rendering text over video, that may turn out useful. To keep the
text visible not matter what video background it is rendered over, one may want to have an
outline around text glyphs. Such outline can be produced by the similar CSS:

<!DOCTYPE html>
<html>

<meta charset="utf-8">
<style>
.outlined
{

color: white;
text-shadow:
-1px -1px 0 #000,
1px -1px 0 #000,
-1px 1px 0 #000,
1px 1px 0 #000;

}
</style>

<body>
<h1 class="outlined">Outlined text</h1>

</body>
</html>

In the above example, the HTML text elements having class outlined, have the white color
and black outline, which is 1 pixel wide. Such text is clearly visible over virtually any video
background, except artificially synthesized images. If this technique is used, the “transparent
backgound” color should be chosen close to the color of text shadow (which is equal to #000
in above example, not the inner color white), in order to suppress antialiasing-related effect.

2.4.6 Analytics engine

The computer vision engines built into Viinex, namely the license plate recognition engine
and the face detection engine, share several common settings. The configuration sections for
mentioned modules should have form of:

{

74

https://viinex.com/

User’s Guide Viinex 3.0

"type": STRING,
"name": STRING,
"mode": "image" | "video" | "any",
"datapath": STRING,
"workers": INTEGER,
"shm": INTEGER
...

}

where the ellipsis “...” denotes the application-specific parameters described for the license
plate recognition engine and for the face detection engine in their respective sections 2.3.1,
2.3.3.

Both of mentioned modules behave identically in the sense that they provide the functionality
for the analysis of a still images, allowing this feature to be used “as is”, as well as in a
combination with respective video analytics module to produce results on video sequences.
How exactly the analytics feature is available depends on the mode parameter.

The mode parameter of the configuration object is an optional string taking one of three possible
values: “image”, “video”, or “any”. These values define how the instance of the analytics
engine can be used: whether it can only be published in a web server to be accessible via
HTTP API to perform still image processing upon external request (the “image” case), or it
can only be attached to one or more instances of objects performing the processing on video
sequences (see section 2.4.7), which is the case of “video”, or it can be used in both scenarios
(“any”). By default, if no value for mode property is specified, the value “image” is assumed.
The value for mode configuration parameter cannot be defined arbitrarily by user; it should be
agreed with what is allowed in the license key – it is is checked against the license key, and an
error is issued at startup if the “mode” which is not permitted by license is specified.

The datapath parameter should contain the path to immutable data files that are used by the
analytics engine (LPR and face detection engines have each their own set of such immutable
data). This field is typically populated with correct values during standard deployment (Win-
dows Installer or Debian package manager) and needs not to be modified by the user.

The workers parameter directly affects the throughput of the analytics engine instance. It
specifies the number of requests for image processing which can be processed simultaneously
(in parallel). Of course this also depends on the actual parallelism of the hardware platform,
but the workers parameter defines how many CPU cores, at maximum, can be utilized by
the instance of the engine. The workers parameter cannot be set arbitrarily and need to be
coherent with what is allowed in license key (that is, the workers number set in configuration
is checked against license key).

An optional parameter shm is common for video analytics engines and provides the means to
specify the size of RAM which is allocated as a shared area between Viinex 3.0 core and the
video analytics worker process. The value for this parameter should be an integer number
(size of shared RAM in megabytes). If the shm property is omitted, the default value is
chosen for the specific type of video analytics engine (which is 32 MB for vehicle license plate
recognition, and 128 MB for both railcar identification number recognition and freight container
code recognition). Depending on image size, input framerate and processing speed it may be
necessary to adjust this value.

75

https://viinex.com/

User’s Guide Viinex 3.0

2.4.7 Video analytics module

The video analytics modules built into Viinex, namely the license plate recognition module
(see section 2.3.1), freight container code recognition module (see section 2.3.2), and the face
detection module (see section 2.3.3), all share a common set of configuration parameters. These
modules implement the common behavior: they are linked to one or more video sources, they
expect an external signal (HTTP request) to perform the video analysis and output the result
as the response to that request. All of that modules need to be linked with a respective “engine”
module, which performs the actual analysis. Such engine is the license plate recognition engine
("type": "alpr"), freight container code recognition engine ("type": "cidr"), and the
face detection engine ("type": "facedet").

The configuration section for video analytics module should have the following form:

{
"type": STRING,
"name": STRING,
"freeflow": BOOLEAN,
"roi": [FLOAT, FLOAT, FLOAT, FLOAT],
"confidence": FLOAT,
"preprocess": FLOAT,
"postprocess": FLOAT,
"skip": INTEGER | "non_idr" | "while_busy",
"time_budget": FLOAT,
"snapshots": INTEGER

}

The description of that configuration parameters is given below. All of the parameters are
optional, except the type and name parameters which Viinex requires to be present in every
modules’ instance configuration section.

The most important parameter here is freeflow because it defines the mode of operation for
the analytics module. There are two possible modes of operation: “triggered” and “freeflow”.
The difference in how the analytics module can be used in these two modes is discussed in
section 3.18. In a few words, the “triggered” mode means that the analytics module waits for
a user’s command to begin video processing and produce a recognition result, and stops after
that result is produced (or after other covenants are met, like those defined by parameters
postprocess and/or time_budget, see below). The result of processing is returned to the
user’s application as a response to the API call which triggered the processing. In contrast,
the analytics module in “freeflow” mode permanently performs the processing of the incoming
video stream, and emits the processing results as events.

Thus, the freeflow parameter can be set to true in order to override the operation mode of
the video analytics module in the way so that, instead of waiting of a command to perform
analytics from the API, and responding with the analysis result to that command, – with
"freeflow":true the module is performing the analysis continuously, without external com-
mands. There are two consequences if the freeflow mode is enabled: 1) the commands to
initiate the video analytics are no longer accepted by such module. It does not expose respec-
tive methods in its HTTP API. 2) The instance of module becomes an event source; it sends
the results of a video analysis as events. Therefore such video analytics module in freeflow
mode should be linked with event consumers (like web server or a script) in order to process
or further pass the resulting events.

The default operation mode, when this parameter is not set, is to wait for a request to perform

76

https://viinex.com/

User’s Guide Viinex 3.0

video analytics, and return the result as a response to that request, – which corresponds to
the default value of freeflow parameter equal to false.

The roi parameter is optional and defines the region of interest on the frame where the video
analysis should be performed. This parameter should have the form of JSON array of four
floating-point numbers in range [0, 1], denoting left, top, right and bottom coordinates of ROI
rectangle on the original image, with respect to its width (for left and right) and height (for
top and bottom). This parameter may be used to additionally speed up processing, and to get
rid of subtitles on an image, which can interfere with vehicle license plate recognition process.
When roi is not set, is is assumed that the whole image should be processed.

The confidence parameter defines the sufficient level of confidence which signals that process-
ing of further video frames is not required for that processing request. After the request for
processing is received via HTTP API, the video analytics module begins presenting the video
frames to its respective analytics engine sequentially, frame by frame, in order of increasing
timestamp. This process breaks after the first result with confidence greater or equal to
specified value is produced by the analytics engine. By default, value of “confidence”: 0 is
assumed, i.e. processing stops when some (any) result is formed.

The configuration parameters discussed further are irrelevant for the analytics module in the
“freeflow” mode. These are parameters preprocess, postprocess, skip, time_budget and
snapshots. If set for a “freeflow” mode, these parameters are ignored. However, for the
“triggered” mode of operation, the following parameter substatially influence the behavior of
video analytics module.

The preprocess and postprocess values are numbers defining how deep into the past and how
far into the future the video should be analyzed with respect to the moment when a command
for video analysis is received via HTTP API. If the request for video analysis is received
at moment 𝑡0, assuming values preprocess and postprocess to be equal to 𝜏preprocess and
𝜏postprocess respectively, the video data from interval

𝑡 : 𝑡0 − 𝜏preprocess ≤ 𝑡 ≤ 𝑡0 + 𝜏postprocess

is going to be analyzed. The preprocess and postprocess are expected in seconds. In the
example given above, preprocess equals to 1.5 seconds and postprocess equals to 1 second,
so totally at least 2.5 seconds of video should be available for recognition when a request is
received21.

When not set, the preprocess and postprocess parameters are assumed to have the default
value of 0, which means that only one frame should be processed upon each request (the one
that is most close to the moment when the request was received).

The skip parameter defines how H264 video stream is handled to present the frames to the
video analytics engine which performs computer vision analysis on still images. This parameter
may take a an integer value which describes how the video stream is decimated. "skip": 0
means the stream is not decimated (0 frames are skipped, every frame is processed), and every
frame within [𝑡0 − 𝜏preprocess, 𝑡0 + 𝜏postprocess] interval is presented to license plate recognizer.
"skip":1 means that after presenting one frame to recognizer, 1 frame is skipped. Likewise,
"skip": N means that after presenting one frame to recognizer, next 𝑁 frames are skipped,
that is — every 𝑁 + 1-th frame is presented to the analytics engine. The skip parameter may
also take two special string values: "non_idr", which means that all frames except IDR (i.e.

21The actual length of video buffered may be greater than given values, depending on the GOP size (the
interval between keyframes). Since Viinex 3.0 handles H264 video, it is necessary to have the full GOP, from
the previous IDR frame, to decode an image with specific timestamp. Therefore, if GOP size equals to 1 second,
the amount of video that is actually buffered may be equal to GOP size + preprocess + postprocess = 1.0 +
1.5 + 1.0 = 3.5 seconds.

77

https://viinex.com/

User’s Guide Viinex 3.0

keyframes) are omitted, and "while_busy", which stands for skipping everything while the
previous video frame is being processed (and then, of course, one has to wait for the next IDR
frame to decode and process it).

The skip parameter helps saving CPU resources, not waisting them on analyzing the frames
that were shot within a close amount of time, and are likely similar and therefore not con-
taining new information in comparison with each other. Note however, that to implement
the decimation strategy, Viinex 3.0 needs to decode all the video received from video souce
(because failing to decode a single frame within a GOP results in an impossibility to decode
the rest of that GOP). That means that decimation only saves resources on video recognition,
not on decoding. The value "skip": "non_idr" provides the most economical strategy for
data processing which allows to not lose arbitrarily long video fragments even while the CV
engine is busy: the frames are enqueued to be processed. It is recommended choice, if suitable
in other aspects of usage scenario (i.e. if vehicles move slow enough for the license plate text
to be readable on at least one IDR frame within [𝑡0− 𝜏preprocess, 𝑡0+ 𝜏postprocess] interval). The
value "skip": "while_busy", on the other hand, is similar to the "non_idr" and is even
more economical because it guarantees that there is no data queued to be processed. It there-
fore guarantees that the processing ends as soon as the 𝑡0 + 𝜏postprocess timestamp is reached
in the input video stream. Last but not least, the "skip": "while_busy" setting might be
the only viable option when the video analytics module is linked with a raw, uncompressed
video source (namely the USB camera), the time required for processing of every frame is
significantly larger than the iter-frame period, and the postprocess time is long. In described
situation, if the video data is queued to be processed with a guarantee, it is possible that the
queue grows rapidly, and with uncompressed video this is highly undesireable22. Therefore
it is recommended that "skip": "while_busy" is used whenever video analytics module is
linked with a raw video source (otherwise, an additional care should be taken to make sure
that video registration does not suffer from data queueing in video analytics module).

When not set, the skip parameter is assumed to have the default value of "non_idr".

The time_budget setting is certain way connected with preprocess, postprocess and skip,
but relates to control over the process of the video analysis rather than to the data being
analysed. Indeed, it is worth to be emphasized that while the preprocess and postprocess
parameters denote the time interval, that interval is measured against the timeline within the
video stream being processed. It has nothing to do with the real time clock on the system where
the analysis is performed. In contrast, the time_budget denotes the time allotted for video
processing. That is a real time interval, which is measured against the “wall clock”. Whenever
the analytics module realizes that the time spent for video analysis on a single request exceeds
the value of the time_budget parameter (in seconds), – it stops taking new input frames
for processing, and returns the result as soon as the frames that already appeared on the
“processing converyor” are analysed. Because of the presence of the “processing converyor”
internally in the video analytics module, the time_budget parameter should not be considered
as a very precise guaranteed time to answer (the converyor length might be added to that
time on practice), but it provides a “fuse” for the case if CPU resources are scarce and/or
the processing does not terminate early because of reaching sufficient result confidence (see
below). Note that it typically does not make sense to set the postprocess value less than

22The video device drivers often cannot deal with arbitrary number of memory buffers to grab the video
into. This is connected with receiving the data from the video device via DMA. There is typically a small
number of raw video buffers (frames) which userspace code can hold without video grabber having to suspend
the video registration; and then the userspace code should “return” the buffers back to the driver, in order for
video registration to be resumed. As a result, it is generally not possible to queue many raw video frames in the
userspace for time periods more than several hundreds of seconds, without the need to copy the uncompressed
video data as soon as possible. Such copying itself introduces noticeable overhead, for which reason it is not
performed in Viinex.

78

https://viinex.com/

User’s Guide Viinex 3.0

time_budget.

When the time_budget parameter is not set, no time limit is enforced for processing the data
within configured time interval upon each request.

The snapshots value defines how many recent snapshots should be available to retreive via
HTTP API from this instance of video analytics module (see section 3.16.3, 3.20.3). When the
processing result is returned via HTTP API, it contains the timestamp of a video frame where
the result was obtained. This timestamp may be used in another HTTP API request to obtain
that video frame in form of a snapshot (JPEG image). Setting the snapshots parameter
guaranees that corresponding number of most recent snapshots are available. That snapshots
are held in memory, so it’s not recommended to set this value to a large number: make it
sufficient for you usage scenario. Older snapshots are evicted from memory (overwritten). The
default value for this parameter is 10.

There is also the snapshots_dump_path parameter in the presence of which the video analytics
module is instructed to write out the “best frames” to the local filesystem. The only use case
this option is intended for is to gather the information for image analytics algorithms’ quality
estimation. This option should never be used in production environment: it involves additional
overhead of an extra step of unneeded image compression, and there is also no means for the
disk space used by stored images to be automatically limited.

2.4.8 Video renderer layout

The layout subsection of the video renderer configuration, as well as the body of layout change
HTTP request described in 3.11.2 should be a JSON object of the form

{
"size": [INTEGER, INTEGER],
"background": STRING | [INTEGER, INTEGER, INTEGER],
"nosignal": STRING,
"viewports": [

{
"input": INTEGER,
"border": [INTEGER, INTEGER, INTEGER],
"src": [FLOAT, FLOAT, FLOAT, FLOAT],
"dst": [FLOAT, FLOAT, FLOAT, FLOAT]

},
...

]
}

The size pararmeter is mandatory and defines the width and height of the resulting video, in
pixels.

The background parameter is optional and can be either an array of three integer values,
encoding the RGB colour of the background on the resulting video, or it can be a string
representing the path to a JPEG or BMP file on a local filesystem. Note that this is ignored
if the layout is changed via the HTTP API: it is not allowed for remote clients to refer to a
local filesystem.

If the background parameter is not specified in the configuration, the default value of [0, 0, 0]
(black background) is assumed. If the background parameter is omitted in the HTTP API

79

https://viinex.com/

User’s Guide Viinex 3.0

call, the background previously set is preserved.

The nosignal parameter is optional and can be a string representing the path to a JPEG or
BMP file on a local filesystem. The image specified with that parameter is displayed in the
viewports on the layout where the video source is disconnected (or video data is stalled). If
this parameter is not set, the viewports for disconnected/stalled video sources are excluded
from the layout. Note that this is ignored if the layout is changed via the HTTP API: it is not
allowed for remote clients to refer to a local filesystem.

The viewports parameter should be an array of JSON structures, each describing a viewport
on the resulting video stream. The viewport is a rectangular zone on the resulting video where
one input video stream is rendered. For defining a viewport, the dst parameter is required,
while input, src and border parameters are optional.

The input parameter of the viewport refers to an input video stream which should be rendered
in this viewport. This should be an integer zero-based index of the respective video source in
the sorted (lexicographically ascending) list of video sources linked to this instance of video
renderer. Such list is known to the client authoring the configuration. This list can also be
obtained from an HTTP API call described in 3.11.1.

For instance, if the links section of configuration contains the links

"links": { ...
["rend0","cam1"],
["rend0","cam3"],
["rend0","cam2"],
...

}

between the video renderer and video sources, and there are no more sources linked to that
renderer, — then the "input":0 would refer to cam1, "input":1 would refer to cam2, and
"input":2 would refer to cam3.

Note that the same input value can appear in multiple viewports. It is legal to have viewports
more (as well as less) than the number of video sources linked to the renderer. However it
also should be understood that while changing the number of viewports is relatively cheap
(only one copy/scale operation is added for each viewport), — establishing the link between
the video source and the renderer leads to a permanent video decoding, even if current layout
contains no viewports with that video source. Also, since the link between the video source
and the renderer is established in Viinex 3.0 configuration, it is impossible to change the set
of such links in the runtime.

If the input parameter is omitted from the viewport configuration, this is interpreted as
instruction to display an empty viewport containing the nosignal image. This can be useful
in certain application scenarios when a “placeholder viewport” instead of an actual video should
be displayed in the resulting stream.

The mandatory dst parameter of the viewport defines the geometry of the viewport on the
resulting video stream. The geometry is defined as a JSON array of four floating-point numbers
in range from [0, 1], denoting the left, top, right and bottom coordinates of the viewport. The
left and right coordinates are measured relatively to the resulting image width, while the top
and bottom are measured relatively to the resulting image height.

The optional src parameter of the viewport defines the ROI on the source video which should
be rendered in the viewport. This ROI is defined as a JSON array of four floating-point

80

https://viinex.com/

User’s Guide Viinex 3.0

numbers in range from [0, 1], denoting the left, top, right and bottom coordinates of the ROI.
The left and right coordinates are measured relatively to the respective source image width,
while the top and bottom are measured relatively to the respective source image height. Then
the src parameter is not specified, the default value [0, 0, 1, 1] is assumed, resulting in the ROI
of the whole source image.

Given the src and dst coordinates (in relative units) and the source and destination image
size, it it typically the case that the source ROI size in pixels does not match the resulting
viewport size in pixels. Even more, it may happen that the aspect ratios of the source ROI
and the destination viewport do not match. In either case, what actually Viinex 3.0 does is
scaling the image of the source ROI so that it fits the viewport on the resulting image, and
so that the aspect ratio of the source ROI, in pixels, is preserved when rendering it on the
resulting video.

The viewports may overlap on the resulting video. In that case, the visibility of each viewport’s
content is inferred from the order in which the viewports’ description follow in the layout. The
position of a viewport in viewports array indicates its “depth” for the purpose of determining
the visibility: the viewports at lesser positions within viewports array, if overlapped, are
occluded by the viewports at greater positions within that array.

The optional border parameter of the viewport defines the RGB color components for the
border of the viewport. The color is encoded as three integer numbers in range of [0, 255]. If
the border parameter is not given, no border is drawn around the respective viewport.

2.5 Links

The links section contains an array of JSON arrays, each describing one or more functional
connections that should be established between Viinex 3.0 units at runtime. An example for
such connection is a connection between a video source and a video archive, established in
order to perform the recording of video data from specified video source in the specified video
archive.

The basic form of a link is a pair of names of Viinex 3.0 units defined in objects section:

["object1N", "object2N"]

Such pairs of names are encoded as JSON array of strings containing strictly two elements. The
order of elements in the pair is not important, that is a link description [x, y] is equivalent
to [y, x].

There are two more forms for defining a link: the distributive syntax,

[["object1N1", ..., "object1Nk"], ["object2N1", ..., "object2Nj"]],

and the combinatorial syntax,

["objectN1", "objectN2", ..., "objectNk"],

The distributive syntax for defining links assumes that instead of a pair of strings, a pair of
arrays is specified. Such syntax is interpreted so that all elements from the first array are
linked with all elements from the second one. So, specifying one link in distributive syntax like

81

https://viinex.com/

User’s Guide Viinex 3.0

"links": [
...
[["cam1", "cam2", "cam3"], ["rtspsrv0","web0"]],
...

]

is equivalent to specifying six links of basic form:

"links": [
...
["cam1","rtspsrv0"],
["cam2","rtspsrv0"],
["cam3","rtspsrv0"],
["cam1","web0"],
["cam2","web0"],
["cam3","web0"],
...

]

Each of elements in the link of distributive form may be reduced to a single element:

"links": [
...
["stor1", ["cam1", "cam2"]],
...

]

which is equivalent to just

"links": [
...
["stor1", "cam1"],
["stor1", "cam2"],
...

]

If both arrays are reduced to a single element, this yields in a link of the basic form, i.e. one
link between exactly two Viinex 3.0 objects.

The combinatorial link syntax allows for defining a link as a “flat” array of more than two
elements:

"links": [
...
["rule1", "cam1", "recctl1"],
...

]

Such syntax is expanded into all possible pairs from specified list, with the restriction that a)
an element should not be linked to itself, and b) basic links as pairs are symmetrical. Thus,
the example above is expanded to three basic links:

82

https://viinex.com/

User’s Guide Viinex 3.0

"links": [
...
["rule1", "cam1"],
["rule1", "recctl1"],
["cam1", "recctl1"],
...

]

Said that, it’s clear that distributive and combinatorial forms of links are only a “syntactic
sugar” for specifying multiple basic links. Therefore, for the rest of the document, only the
basic links, each between exactly two objects, are discussed. Distributive and combinatorial
forms of links are convenient for writing configuration with many congenerous objects but they
do not add new semantics to linked objects’ interaction, in comparison with what equivalent
set of basic links would do.

The exact semantics of a basic link created between two Viinex 3.0 objects is automatically
inferred from that object’s types. Not every two objects can be linked together: it depends on
objects’ types whether the link between such objects is meaningful in Viinex 3.0. For example,
there is no point in linking together two video sources, because in no way one video source
can make use of another video source (there are no such ways implemented in Viinex 3.0).
An attempt to create a link between two functinally incompatible objects causes an error at
Viinex 3.0 startup. Concrete descriptions of allowed links are given in section 2.5.

Section links of the configuration documents defines how components are connected to work
together. To define a functional connection (link) between Viinex 3.0 objects, one has to specify
each pair of objects that should interact. Each object implements one or several interfaces –
atomic units of functionality. Some examples for these interfaces are:

• video source,

• snapshot source,

• overlay control,

• layout control,

• PTZ control,

• video storage,

• recording controller,

• event source.

Objects’ interaction type is inferred automatically from types of objects being connected, or,
more precisely, from the interfaces implemented and exposed by objects being linked. That is,
for instance, in connection of ONVIF device and a video storage, and in connection of RTSP
video source and a video storage, significant is that both ONVIF device and RTSP source
implement the video source interface. If an object implements several interfaces, and such
object is encountered in links section, – Viinex 3.0 attempts to link all interfaces provided by
that object with all interfaces provided by second object, expecting that at least one pair of
interfaces can be linked successfully. For instance, “ONVIF device” object implements several
interfaces, including video source and snapshot source. When linked to a web server, which
is capable of publishing both video source and a snapshot source, – both interfaces of ONVIF
device are used, that is – there may be one link specified between ONVIF device and a web

83

https://viinex.com/

User’s Guide Viinex 3.0

server, but essentially two links are created, one for publishing a video source, and one for
snapshot source.

Not every two types of objects can interact, however. If an “illegal” connection (a pair of
functionally incompatible objects forming a link) is encountered in configuration document, an
error is reported. The objects are said to be functionally incompatible if none of their interfaces
are compatible. That is, at least one interface of first linked object should be compatible with
at least one interface of a second linked object, for link to be considered as valid. Allowed
interaction types are described below.

All link types are “many-to-many”, that is — a single object may participate in many links of
same or of different types. However particular link types may add some logical constraints on
involved objects’ participation in other links. All of such cases are documented.

2.5.1 Video source – Video archive

Video sources, in particular RTSP video source and ONVIF device, can be linked with a video
archive. In case if such link is established, the video archive performs permanent recording of
data acquired from specified video source.

2.5.2 Video source – Recording controller

If a link is established between video source and a recording controller, the recording controller
begins acquiring the video stream from that video source, and manages the recording of data
from that video source into video archive. Video source whose data recording in a video archive
is managed by recording controller should not be linked with the same video archive directly.
Neither it should be linked with the same video archive via any other recording controller.

2.5.3 Recording controller – Video archive

If a link is established between recording controller and video archive, all video sources linked
with that recording controller are implicitly linked with corresponding video archive. The
difference with direct Video source – Video archive link is that the recording is controlled by
recording controller (turned on and off upon requests to the controller) rather than takes place
permanently while Viinex 3.0 is running.

2.5.4 Video source – Video renderer

A link established between a video source and the video renerer means that the renderer should
be able to display the video from respective video source in its output. The actual content
displayed by video renderer is controlled by its initial configuration and by HTTP calls to the
video renderer object, as described in section 3.11.

2.5.5 Video source – Stream switch

A link established between a video source and the stream switch means that the switch should
be able to translate the stream from respective video source as its own output. The actual

84

https://viinex.com/

User’s Guide Viinex 3.0

stream translated by the stream switch as its output is defined by its configuration and by
HTTP calls to the stream switch object described in section 3.12.

2.5.6 Video source – WebRTC server

If a link is established between a video source and WebRTC server, the former is published
within the latter to be available for acquiring the live video stream. For details regarding
getting access to a live video source by means of WebRTC, see section 3.14.

2.5.7 Video source – RTSP server

If a link is established between a video source and RTSP server, the former is published within
the latter to be available for acquiring the live video stream via RTSP protocol. The RTSP
URI for obtaining a video stream is defined by the TCP port which the RTSP server listens
on, and the name parameter value of the video source object:

rtsp://SERVERNAME:port /VideoSourceName .

2.5.8 Video archive – RTSP server

If a link is established between a video archive and RTSP server, the former is published within
the latter to be available for acquiring the stored video streams via RTSP protocol. The RTSP
URI for obtaining a video stream is defined by the TCP port which the RTSP server listens
on, the name parameter value of the video archive object, and the name parameter value of the
video source object stored within the video archive:

rtsp://SERVERNAME:port /VideoArchiveName /VideoSourceName .

2.5.9 Video source – Web server

If a link is established between a video source and a web server, the former is published under
that server to be available for acquiring the live video data via HLS protocol and additional
information on the video stream. The details for acquiring media data from a web server are
described in section 3.4 of this document.

2.5.10 Event source – Web server

If a link is established between an event source and a web server, the events generated by
that event source will be available to the WebSocket clients of that web server instance, i.e.
such clients can subscribe to events from that objects and expect to receive that events. See
section 3.22 for more details.

2.5.11 Snapshot source – Web server

If a link is established between a snapshot source and a web server, the former is published
under that server to be available for acquiring still images (snapshots) via HTTP requests. The
details for acquiring snapshots from a web server are described in section 3.8 of this document.

85

https://viinex.com/

User’s Guide Viinex 3.0

2.5.12 Overlay control – Web server

If a link is established between an overlay control and a web server, the former is published
under that server to be available for controlling the content of the overlay drawn over the
resulting video channel of the raw video source or the video renderer) by means of sending
HTTP requests. The details for controlling the overlay content via HTTP API are described
in section 3.9 of this document.

2.5.13 Layout control – Web server

If a link is established between a layout control and a web server, the former is published
under that server to be available for controlling the layout of viewports on the respective video
renderer instance via HTTP requests. The details for controlling the layout via HTTP API
are described in section 3.11 of this document.

2.5.14 PTZ control – Web server

If a link is established between a PTZ control and a web server, the former is published under
that server to be available for controlling the PTZ functionality on the respective ONVIF
device via HTTP requests. The details for controlling the PTZ device via HTTP API are
described in section 3.13 of this document.

Note that in order for the API of PTZ control to become availabe, it has to be explicitly
enabled by means of the enable parameter in the configuration of ONVIF device in Viinex 3.0,
as described in section 2.1.2.

2.5.15 WebRTC server – Web server

A link between a WebRTC server object and the webserver is necessary for the former to
become reachable by remote clients for “signaling” purpose – that is, such link publishes the
WebRTC server under the web server, so that clients can create new WebRTC sessions, get
SDP offers and return SDP answers, – via the HTTP API. For more information refer to
section 3.14.

2.5.16 Vehicle license plate recognizer

Vehicle license plate recognizer – Web server

If a link is established between LPR engine and Viinex 3.0 HTTP server, the former is published
under the HTTP server to be available for remote calls (requests) for recognition. The details
for such calls are described in API section of this document.

This connection is suitable for alpr objects functioning in modes "image" or "any", and for
alprvideo object. The API exposed by the two types of obects differs, see sections 3.16.1 and
3.16.2 respectively.

86

https://viinex.com/

User’s Guide Viinex 3.0

Vehicle license plate recognizer – Video source

If a link is established between LPR video and a video source, the former uses the latter to
receive the video data for analysis.

It is required for the video LPR object to be linked against at least one video source. It is
possible for video LPR object to be linked against two or more video sources. In such case, the
video data from sources linked to the video LPR object is processed alternately (taking one
frame from the first linked video source, then one frame from the second linked video source,
and so on, — thus making a round-robin of the linked video sources).

LPR engine – Video LPR

A link established between an alpr object that is functioning in modes "video" or "any", on
one side, and an alprvideo object, on the other side, is necessary for the latter to function
properly. The alprvideo object uses the alpr object as the recognition engine, and inherits
all of its properties (like selected countries, transliteration and so on).

2.5.17 Face detection

Face detection engine – Web server

If a link is established between the face detection engine and Viinex 3.0 HTTP server, the
former is published under the HTTP server to be available for remote calls (requests) for face
detection. The details for such calls are described in API section of this document.

This connection is suitable for facedet objects functioning in modes "image" or "any", and for
facedetvideo object. The API exposed by the two types of obects differs, see sections 3.20.1
and 3.20.2 respectively.

Video face detector – Video source

If a link is established between the facedetvideo object and a video source, the former uses
the latter to receive the video data for analysis.

It is required for the video face detector object to be linked against at least one video source.
It is possible for video face detector object to be linked against two or more video sources. In
such case, the video data from sources linked to the video LPR object is processed alternately
(taking one frame from the first linked video source, then one frame from the second linked
video source, and so on, — thus making a round-robin of the linked video sources).

Face detection engine – Video face detector

A link established between an facedet object that is functioning in modes "video" or "any",
on one side, and an facedetvideo object, on the other side, is necessary for the latter to
function properly. The facedetvideo object uses the facedet object as the recognition engine,
and inherits all of its properties (like selected countries, transliteration and so on).

87

https://viinex.com/

User’s Guide Viinex 3.0

2.5.18 Recording controller – Web server

If a link is established between recording controller and Viinex 3.0 HTTP server, the former
is exposed under HTTP server to be available for remote requests to control (turn on and
off) the recording of video sources linked with that controller, in the archive linked with that
controller. For details on controlling video recording via HTTP requests see the API section
of this document.

2.5.19 Recording controller – Rule

If a link is established between recording controller and a rule object, the latter takes control
over when the recording should start and stop within the former. There can be several recording
controllers linked to a single rule. However, as stated in 2.1.8, one recording controller should
only be subordinated to a single source of commands, – that is, a web server (with a single
client connecting it to issue commands for recctl object), or one rule. If a single recording
controller is linked to more than one object (rule or web server), an error is reported on
Viinex 3.0 startup.

2.5.20 Rule – Event source

The rule objects in Viinex 3.0 are driven by events coming from event sources, that is – from
ONVIF devices. Each object of type onvif implements the event source interface, and can
be connected with a rule object, in which case the latter receives and processes the events
from the former. There is no limit on the number of links between one rule and different event
sources, and vice versa, between a single event source and different rules. In other words,
one rule is allowed to process events from multiple ONVIF devices, and one ONVIF device is
allowed to participate in multiple rules.

2.5.21 Video archive – Web server

If a link is established between video archive and web server, the former is published under
HTTP server to be available for remote calls for acquiring stored video data and video archive
contents. The details for such calls are described in API section of this document.

2.5.22 Video archive – Replication source

If a link is established between video archive and a replication source, then all video channels
stored in that video archive will be replicated by corresponding replication source.

This link is mandatory part of replication source configuration. If such link is not established
for a replication source, Viinex 3.0 would fail at startup, writing corresponding error message
to its log.

2.5.23 Video archive – Replication sink

If a link is established between video archive and a replication sink, then this video archive
will be used by corresponding replication sink to store all video data coming from replication

88

https://viinex.com/

User’s Guide Viinex 3.0

sources who will be connecting to that replication sink. Video channels will be created in the
video archive dynamically in the runtime, as they become known to the replication sink from
its peer replication sources.

This link is mandatory part of replication sink configuration. If such link is not established for
a replication sink, Viinex 3.0 would fail at startup, writing corresponding error message to its
log.

2.5.24 Replication sink – Web server

The link established between a replication sink and a web server defines which web server
should be used to expose its private API of the replication sink to be used by peer replication
sources. One replication sink may be exposed via one or more web servers. This provides
flexibility for setting up a distributed configuration accessible in several subnets, each with its
own set of credentials for replication sources’ authentication.

2.6 License information

Viinex 3.0 requires a license document for functioning. A license document could be local,
represented by a string of characters in Viinex 3.0 configuration, Windows registry or a file on
Linux filesystem; a license document can also be stored on a USB device (SenseLock dongle).
Another option for a Viinex 3.0 instance is to not have neither a local license document, nor an
access to the Senselock dongle, but to have an access to another (remote) Viinex 3.0 instance
running a floating license server.

Which of these options is chosen depends on the presence of license key in Viinex 3.0 con-
figuration, on the contents of this key, and on the visibility of a Senselock USB device and the
presence of “emulated” license storage. The algorithm to choose between these options is as
follows:

1. If the license key is present in Viinex 3.0 configuration, the content of this key is used.
Depending on format of the value for the license key, this can be either a local “software”
license (e.g. a license bound to the local harware), or a reference to a floating license
server.

2. If the license key is absent in Viinex 3.0 configuration and a Senselock USB dongle
is accessible by the Viinex 3.0 instance, – then the license document contained in that
dongle is used.

3. If the license key is absent in Viinex 3.0 configuration and no Senselock USB dongle
is accessible by the Viinex 3.0 instance, – then the “emulated” license storage is checked
for the presence of a license document.

The control over a license documents that reside in the Senselock USB dongle or a “emulated”
license storage is performed using viinex-lm-upgrade utility and described in section 6.2.
Either of these cases specify a local license document, but do not interfere with Viinex 3.0
configuration (e.g. they are controlled independently from Viinex 3.0 configuration). This
section describes the first of mentioned three options, when the license property is present
in Viinex 3.0 configuration.

89

https://viinex.com/

User’s Guide Viinex 3.0

2.6.1 Local license document

The license key of configuration document is optional. However, if present, it overrides all
license information that might be stored in USB dongles attached to the server or in the
“emulated” license storage. When the license license key is absent, license information is
taken from USB dongle or “emulated” license storage.

The value stored under license key of the configuration document may be a “license docu-
ment” – a string containing the encrypted license information together with information about
hardware where an instance of Viinex 3.0 is allowed to run on. License documents are gener-
ated by Viinex 3.0 licensor upon request. This string value is actually of the same kind which is
accepted as input to command viinex-lm-upgrade update, as described in section 6.2. The
difference that encrypted license documents intended for use with USB dongle, are generated
to be bound to specified USB dongle, and cannot be placed in license section of configuration
document. And vice versa, the encrypted license documents generated to be placed in license
section of the configuration, are always bound to the PC hardware, they are generated by li-
censor in response to information on PC hardware where Viinex 3.0 is supposed to run, and
they cannot be used to update a USB dongle.

The example of Viinex 3.0 configuration with a local license specified in it could be as follows:

{
"objects": [...],
"links": [...],
"license": "NZOiBGeL...(quite a long base64 string)..8zjmkfw=="

}

2.6.2 Floating license client

To access a floating license server, the license property of Viinex 3.0 configuration may hold a
JSON object containing the information to access the HTTP endpoint where respective license
server is exposed:

{
"objects": [...],
"links": [...],
"license": {

"url": STRING,
"auth": [LOGIN, PASSWORD],
"certificate": FILEPATH

}
}

The only mandatory parameter here is url. It should contain the HTTP or HTTPS URL of
the floating license server object. For a sample configuration given in section 2.1.21, where the
floating license server has the name licmgr0 in Viinex 3.0 configuration, the URL would look
like

http://SERVER:PORT/v1/svc/licmgr0

90

https://viinex.com/

User’s Guide Viinex 3.0

where SERVER and PORT are respectively the host name or IP address where floating license
server runs, and the port number of Viinex 3.0 web server. If a web server uses TLS, the
“http://” schema should be replaced with “https://”.

An optional auth parameter, if present, should contain a login name and password for authen-
tication in Viinex 3.0 web server.

An optional certificate parameter, if present, should contain a path to a file on a local
filesystem, represeting a TLS certificate to check server’s authenticity first, before authenticat-
ing ourselves against that server. This is recommended, especially for setups where the floating
license server is accessible in Internet. If the certificate parameter is omitted and TLS is
still being used, then the server’s authenticity is not being checked by floating license client.

For simple setups, when the web server where floating license server runs does not require
authentication, only the url parameter is required, and its value may be placed directly as the
value of license parameter of Viinex 3.0 configuration, similiar to the following:

{
"objects": [...],
"links": [...],
"license": "http://192.168.0.71:8880/v1/svc/licmgr0"

}

In such case Viinex 3.0 distinguishes between a local license document and an URL pointing to
a floating license server by the presence of http:// or https:// prefix in the license string
value.

2.7 Split configuration

For convenience of deployment and for better manageability, the configuration document for
Viinex 3.0 can be split into several separate files. For this, it is required that the files are put
into one directory, and have .json extension. If the path to a directory is passed to Viinex 3.0
at startup, the latter automatically reads all *.json files in that directory, merges their con-
tent according to rules described below, and interprets the merged result as a configuration
document to start up with.

It’s up to the user to decide which parts of configuration to put into each separate file. All files
should have the same configuration document format that is described in this chapter, that is
– each file should be a JSON document that can contain any of three optional keys – objects,
links and license. The rule for merging objects and links sections of configuration parts
is to concatenate corresponding JSON arrays. The order of elements in that arrays does not
matter, therefore the resulting merged configuration will contain all objects and all links
mentioned in configuration parts.

For example, two configuration parts, — file part1.json:

{
"objects":
[

{
"type": "TYPE1",
"name": "NAME11",

91

https://viinex.com/

User’s Guide Viinex 3.0

"parameter1": "value1"
},
{

"type": "TYPE2",
"name": "NAME12",
"parameter2": "value2"

}
],
"links":
[

["NAME11", "NAME12"]
]

}

and file part2.json:

{
"objects":
[

{
"type": "TYPE1",
"name": "NAME21",
"parameter1": "value3"

},
{

"type": "TYPE2",
"name": "NAME22",
"parameter2": "value4"

}
],
"links":
[

["NAME21", "NAME22"]
]

}

would be merged into an equivalent of the following configuration:

{
"objects":
[

{
"type": "TYPE1",
"name": "NAME11",
"parameter1": "value1"

},
{

"type": "TYPE2",
"name": "NAME12",
"parameter2": "value2"

},
{

92

https://viinex.com/

User’s Guide Viinex 3.0

"type": "TYPE1",
"name": "NAME21",
"parameter1": "value3"

},
{

"type": "TYPE2",
"name": "NAME22",
"parameter2": "value4"

}
],
"links":
[

["NAME11", "NAME12"],
["NAME21", "NAME22"]

]
}

The rule for merging the license section is to find an existing license value, if any, within
the partial configuration files, and to use it in the resulting merged configuration document.
That is, if no license values were present in configuration parts, it will not be present in the
merged configuration. If exactly one license value was present in exactly one configuration
part, – that value will be present in the resulting merged configuration. If more than one
license section is present in configuration parts, it is guaranteed that one of them will be
present in the resulting configuration document, but it is undefined which one, therefore it’s
advised to avoid authoring configuration parts in such way. The recommended practice is
to put the PC hardware-bound license document into one separate partial configuration file,
containing license section only.

Splitting the configuration document into several files can be used to isolate independent parts
of configuration, or to separate rarely changing parts from those which change often.

An example layout for configuration document split into several files is given below.

File web.json:

{ "objects": [
{ "type": "webserver",

"name": "web0",
"port": 8880,
"staticpath": "static"

}
]

}

The web server is defined within this configuration part. It’s likely that, once created, this
part would never be changed.

File storage.json:

{
"objects": [

{
"type": "storage",

93

https://viinex.com/

User’s Guide Viinex 3.0

"name": "stor0",
"folder": "C:/videostorage",
"filesize": 16,
"limits": {

"keep_free_percents": 20
}

},
{

"type": "recctl",
"name": "recctl1",
"prerecord": 5,
"postrecord": 3

},
{

"type": "recctl",
"name": "recctl2",
"prerecord": 5,
"postrecord": 3

}
],
"links": [

["stor0","web0"],
["recctl1","stor0"],
["recctl2","stor0"],
["recctl1","web0"],
["recctl2","web0"]

]
}

A video archive and two recording controllers are defined in this configuration part. The
recording controllers are attached to the video archive, and they all are exposed via the web
server. Note that video sources are not mentioned in this part of configuration yet.

File zone1cams.json:

{
"objects": [

{
"type": "rtsp",
"name": "cam1",
"url": "rtsp://192.168.0.121:554/ISAPI/streaming/channels/101",
"auth": ["admin","12345"],
"transport": ["udp"]

},
{

"type": "rtsp",
"name": "cam2",
"url": "rtsp://192.168.0.111:554/ISAPI/streaming/channels/101",
"auth": ["admin","12345"],
"transport":["tcp"]

}
],
"links": [

94

https://viinex.com/

User’s Guide Viinex 3.0

["cam1", "recctl1"],
["cam2", "recctl1"],
["cam1", "web0"],
["cam2", "web0"]

]
}

With this file, two video cameras are created, their video streams are published via the web
server, and the newly created cameras are recorded with recctl1 object controlling the record-
ing process. Note that this part of configuration does not mention a video archive directly.
This is how the configuration can be organized into a number of small sub-configurations of
“scenes”.

File license.json:

{"license":"QIXOGBdR1qv.....BSXOKX2DHY="}

As recommended above, the license key is written into a separate file to ensure that there is
only one license document stored in the configuration, so it’s guaranteed to be replaced upon
license upgrade. On the other hand, license upgrade would only touch one file, preserving the
rest of configuration unchanged.

95

https://viinex.com/

User’s Guide Viinex 3.0

3 HTTP API

Functionality provided by Viinex 3.0 is available for use from client applications by means
of HTTP API. When a component of Viinex 3.0 is published in the built-in Viinex 3.0 web
server, it exposes its specific part of API under that web server. Note that a component may be
configured to not expose its HTTP API; in that case it only participates in internal interaction
with other Viinex 3.0 components.

All components’ API are published under URLs depending on the names of components in
Viinex 3.0 configuration document. For instance, when a vehicle license plate recognizer with
name “alpr0” is published in the web server, its API becomes available under subtree

http://SERVERNAME:SERVERPORT/v1/svc/alpr0

This is a general rule: the common prefix of /v1/svc/NAME is prepended to the URLs for
accessing functionality of Viinex 3.0 component with name NAME. One exception from this rule
is the web server itself, which is uniquely identified by TCP port number.

The HTTP APIs for all previously mentioned Viinex 3.0 components is described in following
sections. In the tables following, in rows “Request URL and applicable methods”, the parts of
URLs that are specific to described service/function, are highlighted with italic font .

3.1 Web server

3.1.1 Enumerate published components

Request purpose

Obtain the list of components published under the web server, along with their interface types.

Request URL and applicable methods

GET http://servername:port /v1/svc

Request parameters

none

Response syntax

JSON array of 2-element arrays (tuples):

96

https://viinex.com/

User’s Guide Viinex 3.0

[["interfaceType1", "componentName1"],
...,
["interfaceTypeN", "componentNameN"]]

Response example

[
["AutoLPR", "alpr0"],
["VideoStorage", "stor0"],
["VideoSource", "cam1"],
["VideoSource", "cam2"],
["SnapshotSource", "cam2"]

]

means that there are four components published under the web server: a vehicle license plate
recognizer, a video archive, and two video sources. Note that while Viinex 3.0 configuration
file contains definition for object types, these are essentially implementation types. One object
may, however, implement several interfaces, which can be exposed (or not exposed) in HTTP
API. In this request, interface types are described, not implementation types.

3.1.2 Obtain the metainformation on published components

Request purpose

Obtain the metainformation previously stored in the configuration sections for objects created
and published under this instance of web server.

Request URL and applicable methods

GET http://servername:port/v1/svc/meta

Request parameters

none

Response syntax

JSON object (associative array) with keys equal to Viinex 3.0 object names, and values equal
to the content of meta property in configuration of respective Viinex 3.0 object:

{
"componentName1": JSON_VALUE_1,
...
"componentNameN": JSON_VALUE_N

}

97

https://viinex.com/

User’s Guide Viinex 3.0

Only the components are reported which are published under this instance of Viinex 3.0 web
server, and which have their meta property set to a non-null JSON value.

Response example

For the configuration example given at page 9, the response to metainformation request would
look like:

{
"cam1": { "desc": "Backyard" },
"cam2": { "desc": "Hall" },
"stor0": { "desc": "Long-term storage",

"volume": "/dev/sdb" }
}

It’s up to the user or the application which authors Viinex 3.0 configuration to decide how to
use these values. Viinex 3.0 only reads them from configuration documents and reports them
unmodified, in response to this /v1/svc/meta request.

3.2 Authentication

3.2.1 Authentication challenge

Request purpose

Receive an authentication challenge from the server

Request URL and applicable methods

POST http://servername:port/v1/authGetChallenge

Request parameters

login – user login in case of password authentication or API key in case of apikey authenti-
cation record type to be used on the next step

Response syntax

JSON object:

{
"when": TIMESTAMP,
"realm": STRING,
"challenge": STRING,
"signature": STRING

}

98

https://viinex.com/

User’s Guide Viinex 3.0

where when – timestamp indicating when the challenge was issued, challenge – the challenge
itself (that’s basically a random data), signature – the signature of the challenge, which allow
the server to validate client’s response to the challenge. signature is hashed and signed mix
of timestamp when challenge was issued, the challenge data and the login of a client who
requested the challenge. This makes for a server possible to verify that client has responded to
the challenge that was proposed to that client, – not to some other challenge that might have
been tampered or stored previously and outdated by the time of client’s response.

The realm string is optional and returned only in case if the login parameter referenced the
account with password authentication data record type, see section 2.1.19 for details. realm
is returned for client’s convenience, it can be used by client to perform the computations
with user’s password to build the correct authentication response. If authentication record
type referenced by login parameter is apikey, then the secret for this account is stored by
server and client as plain text, therefore no additional hashing of password is required before
computing the authentication response by client. In such case, realm parameter is absent in
server’s challenge.

Response example

Request:

POST http://localhost:8881/v1/authGetChallenge?login=agentA

Response:

{
"when":"2017-01-16T12:06:46Z",
"challenge":"37016c28c4dceb8b813b9fc246c66200addc439398f428\

0a1a49db3378b03dda",
"signature":"b541cafadd67e364c653c29d6b49c0dc"

}

signature is hash-based message authentication code [7] of a combination of login, challenge
timestamp and challenge data.

3.2.2 Authentication response

Request purpose

Authenticate client at the server

Request URL and applicable methods

POST http://servername:port/v1/authCheckResponse

Request parameters

Authentication response should be passed as POST request body.

99

https://viinex.com/

User’s Guide Viinex 3.0

Response syntax

Authentication response which should be passed as an argument to this call as the HTTP re-
quest body is JSON document with fields login, when, challenge, signature and response.
The first four fields have the same meaning as in challenge description, and their values should
be preserved by client after it receives an authentication challenge from server.

The response field should be the HMAC [7] of challenge data, computed with client’s secret,
if the authentication data record type is apikey, or hashed combination of user’s password and
realm, if authentication data record type is password (see section 2.4.2 for details). In other
words, secret is in either case the thing stored by server, and response is computed as

hex(HMAC(challenge.challenge, secret))

There is a reference implementation for this algorithm available at [24].

Upon successful authentication, server sets the cookie auth which contains the information on
authenticated client’s identity and permissions (i.e. an access token). This cookie is base64-
encoded JSON document containing that information. Simultaneously, the same document is
returned in authCheckResponse response body.

{
"salt": STRING,
"issued": TIMESTAMP,
"user": INTEGER,
"sign": STRING

}

Upon authentication failure, server returns HTTP error code 401.

Response example

Request:

{
"login": "agentA",
"challenge": "fdfeefeaa33d4f683bc843cae4375592439fa980ac969e\

7757226baf15ef5398",
"when":"2017-01-16T12:06:46Z",
"signature": "ffad8f01f7ad42742a9e263c34e46b4d",
"response": "4c7bd5ae85894f78eb87bd2955f4cd83"

}

Response:

HTTP/1.1 200 OK
Set-Cookie: auth=eyJzYWx0IjoiMzQxNDcwMzE5ZjVlZDRhODIxM2UzMjdhMWU\

yNTJiODJlYzhhZmFmZGM4MWYzMzQxNTNjZmE5YzU5YmFlMm\
NhMSIsImlzc3VlZCI6IjIwMTctMDEtMTZUMTI6NTg6MzkuN\
zcyODI0NFoiLCJzaWduIjoiYWMzMmZkYTc1NDViZDlhNGEx\
MTQ5YzRjOWVjOTkzNWEiLCJ1c2VyIjoxfQ==

100

https://viinex.com/

User’s Guide Viinex 3.0

{
"salt": "05df034adb47f865bfba4bb5028660d8fa3fd6774f8a391c83a\

2437737062afa",
"issued": "2017-01-16T12:57:34.8826421Z",
"user": 1,
"sign": "3c60158187b07dfbb972d084e7c7831e"

}

The client should compute its response to challenge as HMAC-MD5 [7] of the challenge data.
The secret for computing the HMAC is secret or MD5 hash of user’s password combined with
the realm (in such case, the realm is passed in server’s response to authGetChallenge request).
After computing HMAC, it should be converted to base16 (a string of hexadecimal digits).

For instance, with secret equal to foobarsecret42 and challenge equal to

fdfeefeaa33d4f683bc843cae4375592439fa980ac969e7757226baf15ef5398,

client’s response should be equal to 4c7bd5ae85894f78eb87bd2955f4cd83.

The cookie set by the server in case of successful authentication, should be passed by the client
with each API request. This happens automatically when using a web browser as HTTP client,
but may be required to be done explicitly when building a programmatic HTTP client.

The server may treat the authentication token as temporary on its discretion, and require the
client to repeat the authentication at any time (returning HTTP error code 401).

Authentication is optional for using Viinex 3.0 public API. To turn authentication off, one may
set parameter auth.require to value false in configuration of corresponding webserver, as
described in section 2.1.19.

3.3 Environment

This subsection contains description for API calls for finding out the details of environment
where Viinex 3.0 server is running in, in particular — accessible hardware, like attached disk
drives, visible ONVIF cameras, attached USB dongles, etc.

3.3.1 Attached SenseLock USB dongles

Request purpose

Obtain the list of currently attached SenseLock USB dongles’ serial numbers.

Request URL and applicable methods

GET http://servername:port/v1/env/senselock

101

https://viinex.com/

User’s Guide Viinex 3.0

Request parameters

none

Response syntax

JSON array of strings, each representing the identifier of a dongle attached to the computer:

["senslockId1", ..., "senslockIdN"]

Response example

["9529520000003638"]

denotes that there’s one SenseLock USB dongle with serial number 9529520000003638 currently
attached to the server. The resulting array is empty if no USB dongles found.

3.3.2 License document content

Request purpose

Obtain information on current status of Viinex license manager, that is the license document
and the mode which license manager is started in.

Request URL and applicable methods

GET http://servername:port/v1/env/license

Request parameters

none

Response syntax

JSON object of the following structure:

{
"document": {

"product": "Viinex20",
"binding": {"senselock": STRING} | {"hwid": STRING},
"features": { STRING_1: INT_1, ..., STRING_N: INT_N },
"timelimit": TIMESTAMP

},
"mode": "hardware" | "software" | "demo"

}

102

https://viinex.com/

User’s Guide Viinex 3.0

The document section denotes the content of license document with which license manager is
started. It is a JSON object with four fields:

product is a constant string equal to “Viinex20” for Viinex 3.0. binding is a JSON object which
denotes either senselock dongle identifier, or a hardware ID string describing the computer
harware which license document was issued for (see also sections 6.2.1, 6.2.3). The features
field is an associative array with keys of type string, each corresponding to a position in the
license document, and values of type integer, denoting the limit for the respective position.
The positions include:

• IpVideochannel – an object which implements video registration functionality via TCP/IP
network (RTSP protocol), that is – RTSP video source or an ONVIF video camera;

• UsbVideochannel – an object which implements video registration functionality via Di-
rectShow or Video4Linux API;

• VmsChan – the vmschan object providing an access from Viinex 3.0 video channel in a
3rd party VMS;

• LPRecognizer – an instance of license plate recognition engine;

• ReplicationSink – video archive replication sink (i.e. the server capable of gathering
video information from multiple Viinex 3.0 video archives;

• ReplicationSource – video archive replication source, that is – an agent capable of
sending video information from a local archive to the replication sink.

The timelimit field, if set, denotes when license document becomes invalid. If timelimit
field is not set or equals to null, this means that the license document is permanent.

The mode field describes the current mode of license manager operation. There are three
possible values for that field:

• hardware – license manager runs on the USB dongle, bound to that dongle;

• software – license manager runs on the PC, bound to the hardware parts of that PC;

• demo – license manager runs with predefined limitations, not bound to this specific PC
or a USB dongle.

Response example

{
"document": {

"product": "Viinex20",
"binding": {

"senselock": "9529520000003638"
},
"features": {

"IpVideochannel": 16,
"ReplicationSink": 1,
"LPRecognizer": 2,
"ReplicationSource": 2

},

103

https://viinex.com/

User’s Guide Viinex 3.0

"timelimit": null
},
"mode": "hardware"

}

means the license manager operates on the USB dongle. License document is bound to the
USB dongle with identifier 9529520000003638; it is permanent, and allows for creation of 16
RTSP video sources or ONVIF cameras, 1 replication sink, 2 video replication sources, and 2
vehicle license plate recognizers.

3.3.3 Probe for licenses

Request purpose

Ask the license manager whether the next attempt to acquire the licenses for specified features
in specified quantity would succeed.

Request URL and applicable methods

POST http://servername:port/v1/env/license/probe

Request parameters

Request body – a JSON array describing feature names and respective quantities to probe

Response syntax

The request body should contain a JSON array of pairs of feature name and respective quantity,
each pair encoded as a JSON array of exactly two elements, – a string and an integer:

[[STRING1, INT1], [STRING2, INT2], ...].

The feature names accepted in this request are the same values that are described in sec-
tion 3.3.2.

The call returns an empty JSON object [] upon success. Upon failure, an object containing
boolean property "success" set to false and the string property "error" is returned.

Response example

$ curl -X POST http://localhost:8880/v1/env/license/probe \
--data-binary ’[["IpVideochannel",100]]’

[]

$ curl -X POST http://localhost:8880/v1/env/license/probe \
--data-binary ’[["VmsChan",1000]]’

104

https://viinex.com/

User’s Guide Viinex 3.0

[]

$ curl -X POST http://localhost:8880/v1/env/license/probe \
--data-binary ’[["IpVideochannel",10000]]’

{"error":"Insufficient licenses for IpVideochannel","success":false}

$ curl -X POST http://localhost:8880/v1/env/license/probe \
--data-binary ’[["IpVideochannel",1000],["VmsChan",100500]]’

{"error":"Insufficient licenses for VmsChan","success":false}

In the first two examples the license manager is probed for 100 and 1000 licenses for the
IpVideochannel feature, and both requests succeed. In the 3rd and 4th examples Viinex 3.0
instance is probed for a large number of licenses, and both requests result in a failure, describing
the reason in each case.

Remarks

This call may be used to rougly estimate the number of specific licenses left (available) to use.
The call itself does not affect the state of Viinex 3.0 license manager, i.e. the licenses that
are probed for are not actually acquired by this call. On the other hand, in a multi-user and
multi-tasking environment, when there can be many tasks concurrently acquiring and releasing
licenses (like in the scenarios with dynamic IP video channels, or when the configuration
clusters may be concurrently created or destroyed), – the result of this call should be treated
as possibly outdated right after it was produced, and therefore it should not be used in any
precise computational logic. A recommended way of using this API is to issue some number
of license/probe calls in order to obtain a very rough estimate of how many licenses for a
specific feature are left (in terms like – zero, less than 5, less than 10, ..., more than 1000),
and present this conclusion to the user, so that he could take a decision on creating or freeing
certain instances of Viinex 3.0 objects.

It should also be taken into account that depending on license manager implementation and
its current mode of functioning, this call may result in an interaction with a remote system,
and therefore may cause some arbitrary timeouts.

3.3.4 Obtain Viinex 3.0 software version

Request purpose

Obtain the information on Viinex 3.0 version and build number.

Request URL and applicable methods

GET http://servername:port/v1/env/about

Request parameters

none

105

https://viinex.com/

User’s Guide Viinex 3.0

Response syntax

In response, the JSON object with string properties product, version, build and version_full
is returned:

{
"product": STRING,
"version": STRING,
"build": STRING,
"version_full": STRING

}

Response example

Example call to /v1/env/about API method could yield the result similiar to the following:

{
"product":"viinex",
"version":"2.0.0",
"build":"171",
"version_full":"2.0.0.171"

}

3.3.5 Discover visible ONVIF devices

Request purpose

Obtain the list of ONVIF devices visible by the server being asked.

Request URL and applicable methods

GET http://servername:port/v1/env/onvif

Request parameters

none

Response syntax

An array of JSON objects, each having two fields scopes and xaddrs:

[
{

"scopes": {
"key1": "val1",
...

106

https://viinex.com/

User’s Guide Viinex 3.0

"keyN": "valN",
},
"xaddrs": [

"URI_1",
...
"URI_M"

]
},
...

]

The scopes member is an associative array containing some of scopes put by ONVIF device
into the WS-Discovery response, that are recognized by Viinex 3.0, see remarks below for more
details. The xaddrs member is an array of strings representing the URIs for accessing ONVIF
device, as reported by WS-Discovery response. Appropriate elements of this array can be used
as parameter for onvif/probe call, and for ONVIF video source configuration in Viinex 3.0.

Response example

[
{

"scopes": {
"location": "city/hangzhou",
"name": "HIKVISION%20DS-2CD2132-I",
"hardware": "DS-2CD2132-I"

},
"xaddrs": [

"http://192.168.0.111/onvif/device_service",
"http://[fe80::4619:b6ff:fe6a:4380]/onvif/device_service"

]
},
{

"scopes": {
"location": "city/hangzhou",
"name": "HIKVISION%20DS-2CD4024F",
"hardware": "DS-2CD4024F"

},
"xaddrs": [

"http://192.168.0.121/onvif/device_service",
"http://[fe80::4619:b6ff:fe6b:2b45]/onvif/device_service"

]
}

]

In the above example, two ONVIF devices were discovered, having 192.168.0.111 and 192.168.0.121
IPv4 addresses.

Remarks

Section 7.3.2.2 of ONVIF core specification [8] requires that “scopes” are represented by URIs in
form of onvif://www.onvif.org/<path>. For convenience, Viinex 3.0 chops off the permanent

107

https://viinex.com/

User’s Guide Viinex 3.0

part of that value, leaving the significant part only. Resulting scopes associative array may
be used to display human-readable values for discovery results in the UI.

Viinex 3.0 recognizes the name, hardware and location scope values filled in by ONVIF device
in WS-Discovery response.

3.3.6 Probe an ONVIF device

Request purpose

Obtain the detailed information on video sources and profiles configured on the ONVIF device.

Request URL and applicable methods

POST http://servername:port/v1/env/onvif/probe

Request parameters

There are no parameters in the request URL. A request should carry the body containing
a JSON object with one of two mandatory fields, url or host (in the latter case it can be
accompanied by optional field port), and an optional field auth which may contain string
array of length two: the login name and the password for accessing the ONVIF device.

Response syntax

Request body:

{ "url": "STRING", "auth": [STRING, STRING] }

or

{ "host": STRING, "port": INT, "auth": [STRING, STRING] }

Response body:

{ "info": OBJECT, "video_sources": OBJECT, "profiles": OBJECT }

See remarks below for more details.

Response example

{
"info": {

"vendor": "HIKVISION",
"serial": "DS-2CD2132-I20140823CCWR477543489",

108

https://viinex.com/

User’s Guide Viinex 3.0

"model": "DS-2CD2132-I",
"firmware": "V5.2.0 build 140721"

},
"video_sources": {

"VideoSource_1": {
"token": "VideoSource_1",
"framerate": 25,
"resolution": [2048, 1536]

}
},
"profiles": {

"Profile_1": {
"token": "Profile_1",
"name": "mainStream",
"fixed": true,
"video": {

"codec": "H264",
"resolution": [1280, 720],
"source": "VideoSource_1",
"quality": 4,
"bounds": [0, 0, 2048, 1536]

}
},
"Profile_2": {

"token": "Profile_2",
"name": "subStream",
"fixed": true,
"video": {

"codec": "H264",
"resolution": [704, 576],
"source": "VideoSource_1",
"quality": 3,
"bounds": [0, 0, 2048, 1536]

}
}

}
}

Remarks

A response to onvif/probe call contains three members: info, video_sources and profiles.

The info member is a JSON object of the form

{
"vendor": "STRING",
"model": "STRING",
"serial": "STRING",
"firmware": "STRING"

}

and contains general information on the ONVIF device being probed: its vendor, model name,

109

https://viinex.com/

User’s Guide Viinex 3.0

device serial number and firmware version.

The video_sources member is an associative array with keys equal to video sources’ “tokens”
(identifiers within a single device), and values describing each video source. Video source
description contains, again, the video source “token”, frame rate and the resolution:

"video_sources": {
"token_1": {

"token": "token_1",
"framerate": INT,
"resolution": [INT, INT]

},
...,
"token_K": {

"token": "token_K",
"framerate": INT,
"resolution": [INT, INT]

}
}

A typical ONVIF video camera has one video source. The information under the video_sources
element represents an excerpt from the SOAP response to GetVideoSources call [9].

The profiles member is an associative array with keys equal to profiles’ “tokens”, and values
describing each profile:

"profiles": {
"token_1": {

"token": "token_1",
"name": STRING,
"fixed": BOOLEAN,
"video": {

"source": "videoSourceToken_M_1",
"bounds": [INT, INT, INT, INT],
"codec": STRING,
"quality": FLOAT,
"resolution": [INT, INT],

}
},
...,
"token_K": {

"token": "token_K",
"name": STRING,
"fixed": BOOLEAN,
"video": {

"source": "videoSourceToken_M_K",
"bounds": [INT, INT, INT, INT],
"codec": STRING,
"quality": FLOAT,
"resolution": [INT, INT],

}
}

}

110

https://viinex.com/

User’s Guide Viinex 3.0

The profile description contains its token again, its human-readable name, the fixed flag
showing whether this profile can be deleted, and the video settings. video.source value
references the token of the video source that is used by this profile. Rest of values under video
section concerns video encoder settings: codec name (Viinex only supports profiles with codec
equal to "H264"), output video quality in relative units, bounds which is rectangle ROI on the
original video source that is taken by video encoder to produce the stream, and resolution
of the resulting video stream.

The information under the profiles element represents an excerpt from the SOAP response
to GetProfiles call [9].

3.3.7 Discover connected raw video sources

Request purpose

Obtain the list of raw video sources visible by the server being asked.

Request URL and applicable methods

GET http://servername:port/v1/env/rawvideo

Request parameters

none

Response syntax

An array of JSON objects, each having three fields: name, address and capabilities:

[
{

"name": STRING,
"address": STRING,
"capabilities": [

OBJECT_1,
...,
OBJECT_N]

},
...

]

name property contains a human-readable name of the device reported by operating system
(the driver). address is the path of the device, as it should be used in respective property
of configuration section of rawvideo object. The capabilities array is the list of modes
reported to be appropriate for the device. Each element of this list is ready to be used as the
value for mode property of rawvideo object configuration, with the exception that elements in
the capabilities list never contain optional parameters; they only specify manatory values,
particularly: pin, colorspace, framerate and size. For more information see section 2.4.3.

111

https://viinex.com/

User’s Guide Viinex 3.0

Response example

[
{

"name": "Behold TV Columbus: A\/V Capture [Slot 1]",
"address":"\\\\?\\pci#ven_1131&dev_7133&subsys_52010000&rev_f0#5&\

2b491bae&0&0000f0#{65e8773d-8f56-11d0-a3b9-00a0c9223196}\
\\{bbefb6c7-2fc4-4139-bb8b-a58bba724083}",

"capabilities": [
{

"pin": "2",
"colorspace": "YUY2",
"framerate": 25,
"size": [704,576]

},
{

"pin": "2",
"colorspace": "UYVY",
"framerate": 25,
"size": [704,576]

},
{

"pin": "2",
"colorspace": "RGB",
"bpp": 24,
"planes": 1,
"framerate": 25,
"size": [704,576]

},
{

"pin": "3",
"colorspace": "YUY2",
"framerate": 25,
"size": [704,576]

},
{

"pin": "3",
"colorspace": "RGB",
"bpp": 16,
"planes": 1,
"framerate": 25,
"size": [704,576]

}
]

},
{

"name": "Microsoft Corp. LifeCam HD-3000",
"address": "\\\\?\\usb#vid_045e&pid_0779&mi_00#6&145ddd63&0&0000#\

{65e8773d-8f56-11d0-a3b9-00a0c9223196}\\global",
"capabilities": [

{
"pin": "0",

112

https://viinex.com/

User’s Guide Viinex 3.0

"colorspace": "YUY2",
"framerate": 30,
"size": [640,480]

},
{

"pin": "0",
"colorspace": "YUY2",
"framerate": 30,
"size": [160,120]

},
{

"pin": "0",
"colorspace": "YUY2",
"framerate": 10,
"size": [1280,800]

}
]

}
]

In the above example, two DirectShow devices were discovered, one TV tuner and one USB
videocamera. A number of operation modes is reported for each device.

3.4 Video source

3.4.1 Status information

Request purpose

Obtain the status information for live video source

Request URL and applicable methods

GET http://servername:port/v1/svc/videosourceN

Request parameters

none

Response syntax

JSON object:

{
"last_frame": TIMESTAMP,
"resolution": [INT, INT],

113

https://viinex.com/

User’s Guide Viinex 3.0

"bitrate": INT
}

where last_frame – a timestamp of the last frame received from the source (may be used to
determine whether the video data is actually transferred to Viinex 3.0; resolution – a pair
of numbers indicating width and height of an image (parsed from video stream); bitrate –
video stream bit rate, estimated using data currently buffered for HLS.

Response example

{
"last_frame": "2016-11-11T00:20:23.292Z",
"resolution": [1280, 960],
"bitrate": 4194304

}

3.4.2 Live stream

Request purpose

Obtain the HLS playlist for live video from a video source

Request URL and applicable methods

GET http://servername:port/v1/svc/videosourceN/stream

Request parameters

none

Response syntax

M3U8 playlist containing URLs for obtaining video segments. Network clients supporting
playback of content delivered via HLS (such as Microsoft Edge or Apple Safari web browsers)
can play requested stream without additional requirements.

Response example

Request:

GET http://192.168.0.70:8880/v1/svc/cam2/stream

Response:

114

https://viinex.com/

User’s Guide Viinex 3.0

#EXTM3U
#EXT-X-VERSION:3
#EXT-X-TARGETDURATION:9.93
#EXT-X-MEDIA-SEQUENCE:42

#EXTINF:9.92,
stream/ts/0001bcf4000000000000000001598e8c060c000001598e8c0d8b.ts
#EXTINF:9.92,
stream/ts/0001bcf5000000000000000001598e8c0ddc000001598e8c155b.ts
#EXTINF:9.92,
stream/ts/0001bcf6000000000000000001598e8c15ac000001598e8c1d2b.ts

3.5 Video archive

Assuming the video archive component has the name storageN in Viinex 3.0 configuration,
the following URLs become available when video archive is published in the web server:

3.5.1 Status and statistics

Request purpose

Acquire general statistics data for video archive

Request URL and applicable methods

GET http://servername:port/v1/svc/storageN

Request parameters

none

Response syntax

JSON object:

{
"disk_usage": INTEGER,
"disk_free_space": INTEGER,
"contexts": {

"videosource1": {
"time_boundaries": [TIMESTAMP, TIMESTAMP],
"disk_usage": INTEGER

},
...,
"videosourceN": {

115

https://viinex.com/

User’s Guide Viinex 3.0

"time_boundaries": [TIMESTAMP, TIMESTAMP],
"disk_usage": INTEGER

}
}

}

where disk_usage – disk space, in bytes, used by stored video data (in total and for each
video source); disk_free_space – disk space, in bytes, free on the volume that video archive
uses; contexts – list of attached video sources; videosource1. . . videosourceN – names of
attached video sources. These names match the names of corresponding objects in Viinex 3.0
configuration; time_boundaries – array of two elements containing timestamps of oldest video
fragment’s beginning and most recent video fragment’s end for that context (video source).

Response example

{ "disk_usage":476881111724,
"disk_free_space":119142789120,
"contexts":{
"cam1":{

"time_boundaries":["2016-11-01T09:00:34.024Z",
"2016-11-11T11:25:18.917Z"],

"disk_usage":303687225548},
"cam2":{

"time_boundaries":["2016-11-01T09:01:31.563Z",
"2016-11-11T11:26:00.216Z"],

"disk_usage":173193886176}
}

}

3.5.2 Archive contents

Request purpose

Obtain detailed information on video archive contents for specific context with identifier
videosourceM.

Request URL and applicable methods

GET http://servername:port/v1/svc/storageN/videsourceM

Request parameters

none

Response syntax

JSON object:

116

https://viinex.com/

User’s Guide Viinex 3.0

{ "time_boundaries": [TIMESTAMP,TIMESTAMP],
"disk_usage": INTEGER,
"timeline": [

[TIMESTAMP,TIMESTAMP],
...,
[TIMESTAMP,TIMESTAMP]

]
}

where time_boundaries – a pair of timestamps of oldest video record beginning and most
recent video record ending; dist_usage – disk space, in bytes, used by video data from that
video source; timeline – an array (sorted in ascending order) of pairs of timestamps, each
describing a segment of continuous video record.

Response example

{ "time_boundaries":["2016-11-01T09:51:31.333Z",
"2016-11-11T12:08:03.856Z"],

"disk_usage":173074472533,
"timeline":[

["2016-11-01T09:51:31.333Z","2016-11-01T21:03:11.673Z"],
["2016-11-01T21:06:09.008Z","2016-11-01T21:31:28.428Z"],
...
["2016-11-11T00:12:54.954Z","2016-11-11T00:20:23.292Z"],
["2016-11-11T01:05:12.396Z","2016-11-11T12:08:03.856Z"]

]
}

3.5.3 Disk usage for a specific time interval

Request purpose

Obtain the disk usage for a specific video archive storageN and specific video source video-
sourceM on a given time interval.

Request URL and applicable methods

GET http://servername:port/v1/svc/storageN/videsourceM /du

The last /du part of the URL comes from the name of UNIX utility du, whose purpose is to
estimate the disk usage for chosen files or directories.

Request parameters

Time interval boundaries, ?begin=TIMESTAMP&end=TIMESTAMP

117

https://viinex.com/

User’s Guide Viinex 3.0

Response syntax

The HTTP response body containse the JSON object of the form:

{ "disk_usage": INTEGER }

Response example

$ curl "http://demo.viinex.com/v1/svc/stor0/camViinexPond1/du?\
begin=2019-02-28T05:00:00&end=2019-02-28T17:00:00"
{"disk_usage":475048275}

Remarks

The figure given as the result of this call is a rough estimate of disk usage for specified time
interval. Only the size of media files that overlap with requested time interval is taken into
account, but not the structure of media data within those files.

3.5.4 Overall disk usage for a specific time interval

Request purpose

Obtain the disk usage for a specific video archive storageN on a given time interval.

Request URL and applicable methods

GET http://servername:port/v1/svc/storageN

Request parameters

Time interval boundaries, ?begin=TIMESTAMP&end=TIMESTAMP

Response syntax

The HTTP response body containse the JSON object of the form:

{
"disk_usage": INTEGER,
"contexts": {

"videosource1": {
"disk_usage": INTEGER

},
...,
"videosourceN": {

"disk_usage": INTEGER

118

https://viinex.com/

User’s Guide Viinex 3.0

}
}

}

Note that this syntax is the partial form of the reponse described in section 3.5.1. These two
calls are distinguished with the presence/absence of begin and end call parameters in their
request URLs.

Response example

$ curl "http://demo.viinex.com/v1/svc/stor0?begin=2019-02-28T05:00:00\
&end=2019-02-28T17:00:00"
{"contexts":{"camViinexPond1":{"disk_usage":475048275}},"disk_usage":475048275}

3.5.5 Media export

Request purpose

Export video data for specific context with identifier videosourceM.

Request URL and applicable methods

GET http://servername:port/v1/svc/storageN/videsourceM/export

Request parameters

begin – mandatory parameter, requested timestamp to begin video data export from. Inte-
ger number of milliseconds elapsed since UNIX epoch (1970-01-01 00:00:00.000 UTC). Note
that actual export may be performed from different point, which is selected according to the
following rules:

• if there is no continuous video fragment containing the requested begin point, export is
performed from the nearest video fragment starting after that requested point;

• if there is a continuous video fragment containing requested begin point, export actually
from start of the GOP which contains requested begin point.

That is, if begin points no a non-IDR frame, the export will begin from nearest IDR frame
preceding that point (there will be some amount of pre-roll frames, necessary to correctly
decode video frame at requested begin point).

end – mandatory parameter, requested timestamp to end video data export at. Integer number
of milliseconds elapsed since UNIX epoch.

format – optional parameter, which sets the desired output format (container) for video. There
are three possible values for this parameters: isom for export in ISO-14496 part 12 format [1]
(also known as MP4); ts for ISO-13818 part 1 format [2] (also known as MPEG TS), and
raw for obtaining raw H.264 stream with separator NAL units, without container (and as

119

https://viinex.com/

User’s Guide Viinex 3.0

consequence with no timing information). The default behavior (if no value is specified for
format parameter) is to export data in MP4 (isom) format.

timebase – optional parameter which is applicable only for format=ts case, which allows to
set desired time base in the stream. If set, the presentation timestamps set for each frame in
the TS, will be counted exactly from requested time base. This allows for precise positioning
in exported video fragments.

Response syntax

A binary content in MP4, MPEG TS or raw H264 format, depending on the value of “format”
parameter. “Content-Disposition” header is set in HTTP response to set recommended file
name and extension.

Response example

http://192.168.0.70:8880/v1/svc/stor0/cam2/export?

begin=1478545200000&end=1478545800000&

format=ts&timebase=1478545200000

Export video from video source cam2 attached to video archive stor0, starting at 07 Nov 2016
19:00:00 GMT (1478545200000), finishing at 07 Nov 2016 19:10:00 GMT. Create a MPEG2
Transport stream, marking timestamps so that PCR wraparound occurs exactly at 07 Nov 2016
19:00:00 GMT (so that if there’s preceding IDR and non-IDR frames before non-IDR frame at
07 Nov 2016 19:00:00 GMT, such “pre-roll” frames will get negative timestamp values).

3.5.6 Media playback

Request purpose

Obtain playlist for HTTP Live Streaming [3] of video data from video source videosourceM
being stored in video archive storageN.

Request URL and applicable methods

GET http://servername:port/v1/svc/storageN/videsourceM/stream

Request parameters

begin – mandatory parameter, requested timestamp to begin video data export from. Integer
number of milliseconds elapsed since UNIX epoch (1970-01-01 00:00:00.000 UTC).

end – mandatory parameter, requested timestamp to end video data export at. Integer number
of milliseconds elapsed since UNIX epoch.

120

https://viinex.com/

User’s Guide Viinex 3.0

Response syntax

M3U8 playlist containing URLs for obtaining video segments. Network clients supporting
playback of content delivered via HLS (such as Microsoft Edge or Apple Safari web browsers)
can play specified video fragment (from begin to end) without additional requirements.

Response example

Request:

GET http://192.168.0.70:8880/v1/svc/stor0/cam2/stream
?begin=1478545200000&end=1478545300000

Response:

#EXTM3U
#EXT-X-PLAYLIST-TYPE:VOD
#EXT-X-VERSION:3
#EXT-X-TARGETDURATION:9.93
#EXT-X-MEDIA-SEQUENCE:0

#EXTINF:9.92,
stream/ts?zero=1478545199866&begin=1478545199866&end=1478545209786
#EXTINF:9.92,
stream/ts?zero=1478545199866&begin=1478545209866&end=1478545219786
...
#EXTINF:9.92,
stream/ts?zero=1478545199866&begin=1478545289876&end=1478545299796
#EXTINF:2.02,
stream/ts?zero=1478545199866&begin=1478545299876&end=1478545301796
#EXT-X-ENDLIST

3.5.7 Remove records from video archive

Request purpose

Control which records should be removed from video archive.

Request URL and applicable methods

DELETE http://servername:port/v1/svc/storageN/videsourceM
?begin=TIMESTAMP&end=TIMESTAMP

Request parameters

begin – mandatory parameter, requested timestamp to begin video data removal from. Integer
number of milliseconds elapsed since UNIX epoch (1970-01-01 00:00:00.000 UTC).

121

https://viinex.com/

User’s Guide Viinex 3.0

end – mandatory parameter, requested timestamp to end video data removal at. Integer
number of milliseconds elapsed since UNIX epoch.

Response syntax

The DELETE call makes video archive implementation to remove video recordings specified by
the time interval.

Response example

Request:

DELETE http://192.168.0.70:8880/v1/svc/stor0/cam2
?begin=1478545200000&end=1478545300000

means a request to remove video data in video archive stor0 for channel cam2, starting from
2016-11-07 19:00:00 UTC (1478545200000), ending on 2016-11-07 19:01:40 UTC (1478545300000).

Remarks

As the data in video storage is organized in a number of relatively small video files, of default
size about 16 MB each. The video archive implementation in Viinex does not modify those
video files after they are formed. The video data removal operation is actually performed as the
removal of all video files that have non-empty intersection with selected time interval [begin,
end].

The DELETE API method is disabled by default. In order to enable it, the allow_removal
property should be set to true in the configuration section for respective instance of video
archive. For detailed syntax see section 2.1.7.

3.6 Recording controller

3.6.1 Status information

Request purpose

Obtain the information on recording controller recctlN, that is – attached video sources, video
storage, and current status.

Request URL and applicable methods

GET http://servername:port/v1/svc/recctlN

122

https://viinex.com/

User’s Guide Viinex 3.0

Request parameters

none

Response syntax

JSON object:

{
"sources": [“source1", ..., "sourceM"],
"storage": "storageK",
"status": “on" | "off"

}

where

source1. . . sourceM are identifiers of video sources attached to this recording controller (ac-
cording to Viinex 3.0 configuration);

storageK is an identifier of video storage this recording controller is attached to;

status – current status of the recording controller (on if controller currently transfers the data
to the storage, off if it does not).

Response example

{"status":"on",
"sources":["cam2","cam1"],
"storage":"stor0"}

3.6.2 Change recording status

Request purpose

Change the status of recording controller recctlN.

Request URL and applicable methods

POST http://servername:port/v1/svc/recctlN/start

(to set recording “on”), or

POST http://servername:port/v1/svc/recctlN/stop

(to set recording “off”).

Request parameters

none

123

https://viinex.com/

User’s Guide Viinex 3.0

Preconditions

In order for the recording controller status to be changed, it should initially be in the status
that is opposite to the one that was requested. In other words, to start recording, the recording
should initially be stopped, and vice versa.

Response syntax

Upon successful scheduling of status change command, HTTP status 200 is returned. The
JSON body returned in successful response to this request should be ignored by the caller. For
backwards compatibility, the response holds a JSON object

{ "status": "on" | "off" }

indicating a new status, or HTTP error with code 412 if precondition was not met. However
this return type is deprecated and will be replaced with an empty JSON object [] in the
future. If the caller needs the actual status of recording controller, an explicit request 3.6.1
should be used.

Response example

{"status":"on"} | []

Remarks

The API given above is straightforward, however it can be effectively used only in assumption
that there’s only one client to the Recording controller object. If there are multiple clients
to the controller, they are responsible for resolving the conflicts of multiple concurrent “start
recording” and “stop recording” requests.

3.6.3 Flush accumulated video data to disk

Request purpose

Flush all of the data accumulated in memory so far to form a new file (video archive fragment)
on the disk.

Request URL and applicable methods

POST http://servername:port/v1/svc/recctlN/flush

Request parameters

none

124

https://viinex.com/

User’s Guide Viinex 3.0

Remarks

The flush call forces the video archive that is linked with the recording controller to immediately
complete the “current” video fragment.

This call helps to ensure that a) video data accumulated so far by the recording controller is
flushed to the disk, so that in case of power failure that data would be available; and b) that
video data is available in the video storage using its API.

3.7 Managed replication

This section describes the HTTP API exposed by a replication sink in managed mode. Such
mode assumes that a sink accepts replication tasks and executes them. Respectively, the
programming interface is organized as a CRUD API for managing the replication tasks.

3.7.1 Enqueue a new replication task

Request purpose

Schedule a new replication task for managed replication sink replsinkN.

Request URL and applicable methods

PUT http://servername:port/v1/svc/replsinkN /task/TASK_ID

Request parameters

TASK_ID – an identifier of the new replication task (unique string). Chosen by client. Request
body – a JSON object desribing the replication task, see below syntax details.

Response syntax

The client should generate a task identifier – a unique string to distinguish between other
replication tasks that might be queued in the replication sink. This task identifier should be
the last part of URI path in this call.

The request body for this method should be a JSON object having the following form:

{
"type": "rtsp" | "vmschan" | "mediafile",
"meta": JSON,

"rem": "For replication task of type rtsp:",
"url": STRING,
"auth": [STRING, STRING],
"transport": ["tcp"|"udp"],

125

https://viinex.com/

User’s Guide Viinex 3.0

"rem": "For replication task of type vmschan:",
"name": STRING,

"rem": "For replication task of type mediafile:",
"path": STRING,

"speed": NUMBER,
"channel": STRING,
"begin": TIMESTAMP,
"end": TIMESTAMP,
"suspend": BOOLEAN

}

The replication task represents the description of a source of video, and the instructions on
how the video should be copied to the destination storage.

The type property specifies the type of replication source. Value “rtsp” means that video
data has to be replicated from some RTSP server. In that case, the properties url, auth
and transport should be also specified. The meaning of these properties matches that for
respective properties for the RTSP video source configuration, as described in section 2.1.1.

Another possible value for the type property is “vmschan”. This special value means that
replication source is a third party video management system, which is configured and connected
within this instance of Viinex 3.0 as described in section 2.1.13. In this case, the property name
should be specified in the replication task; this property should be equal to the name of object
of type vmschan, which represents a video channel from a third-party VMS.

The third possible value for the type property is “mediafile”. This value means that a
fragment of video data should be read from a local media file and stored in Viinex 3.0 video
archive. For this type of replication task, the property “path” should be specified; it should
contain the path to a source media file on a local filesystem (on the computer where Viinex 3.0
runs).

The meta property may contain an arbitrary JSON value and can be used by client software
to store additional identification or other information for the replication task.

Numeric property speed specifies the data rate at which the video frames should be received
from the replication source. For instance, specifying "speed":8 means that Viinex 3.0 would
request data transmission rate of 8, which would result in 8 times faster replication in compar-
ison to the normal playback speed. (That is, 10 minutes of video would replicate in 1 minute
and 15 seconds at speed 8).

The property channel specifies the name of a video channel in the video archive where the
video data should be stored. The properties begin and end specify the first and the last
timestamp of the video fragment that should be replicated, – how it should be placed in the
target video storage.

The suspend flag, when set to true, indicates that the replication task should not be started
immediately, but rather it should be placed in the queue in the “paused”, or “suspended” state.
This state can be later changed by means of respective command, see section 3.7.3 for details.

126

https://viinex.com/

User’s Guide Viinex 3.0

Response example

$ cat repltask1.json
{

"type": "rtsp",
"meta": {},
"url": "rtsp://192.168.0.71:554/stor0/cam2?

begin=2017-06-21T08:36:19.365Z&end=2017-06-21T08:37:11.327Z",
"channel": "cam2",
"begin": "2017-06-21T08:36:19.365Z",
"end": "2017-06-21T08:37:11.327Z",
"suspend": false,
"speed":4

}

$ curl ’http://localhost:8880/v1/svc/replsink1/task/1’ -X PUT \
--data-binary @repltask1.json

The second command, given the file repltask1.json is present with the given content, allows
one to replicate video from an RTSP source (in this case this is an RTSP server brought up
in another instance of Viinex 3.0). Video data is replicated at speed of 4 times faster than
normal playback speed.

3.7.2 Get information on replication task

Request purpose

Get information on replication task and its status

Request URL and applicable methods

GET http://servername:port/v1/svc/replsinkN /task/TASK_ID

Request parameters

TASK_ID – an identifier of the the replication task to retreive information for.

Response syntax

Upon success, the response to this query is a JSON object of the following form:

{
"id": STRING,
"meta": JSON,
"origin": { "type":"rtsp", "url":STRING }

| { "type":"vmschan", "name":STRING },
"channel": STRING,

127

https://viinex.com/

User’s Guide Viinex 3.0

"begin": TIMESTAMP,
"end": TIMESTAMP,
"suspend": BOOLEAN,

"status": "queued" | "running" | "suspended"
| "completed" | "cancelled" | "failed",

"error": STRING,
"status_changed": TIMESTAMP,
"time_elapsed": NUMBER,
"last_frame": TIMESTAMP,
"bytes_received": NUMBER

}

The properties id, meta, origin, channel, begin, end and suspend do not change over time
and repeat the information provided by a client at the moment when the replication task was
created. Their meaning is described in the previous section, except for the property origin
which combines the options for and arbitrary RTSP video source and a video channel from a
thirdparty VMS.

The property status indicate the current status of the replication task. For discussion on
statuses, see the next section. The property error may contain a stringified error message for
the task in status failed. The status_changed property indicates the moment, according to
server’s system clock, when the status of the task has changed.

The time_elapsed property contains the number of seconds that was spent on the execution
of this task, except the time the task is in running status since the most recent status change.
This means that a) only the time when the task is in status running is taken into account, but
if the task is currently running, this time does not change with every request – instead the client
may compute current running time comparing wall clock with the value of status_changed
property. For final statuses (“completed”, “cancelled”, “failed”) the field time_elapsed
show the proper total number of seconds which this task was running (but not queued or
suspended).

The last_frame property holds the timestamp of the last frame that was received. It could
be null, if no frames were received yet. For running tasks, when data retrieval is in progress,
this field takes the value in interval of [begin, end]. After the timestamp of last received
frame exceeds the end timestamp, such task is considered completed, even if the data source
continues to send more data. By means of this value a relative progress for execution of the
replication task may be estimated.

The bytes_received property holds the number of bytes that were acquired from the replica-
tion source to the time of request. As a rule the total size of footage to be replicated, in bytes,
is unknown in advance, therefore this property can only be used for statistics and/or general
information. For the tasks where no video data has arrived yet from replication source, this
property is null.

Response example

$ curl ’http://localhost:8880/v1/svc/replsink1/task/1’ -X GET
{

"id":"1",
"meta":{},
"origin":{"type":"rtsp","url":"rtsp://127.0.0.1:554/stor0/cam2

128

https://viinex.com/

User’s Guide Viinex 3.0

?begin=2017-06-21T08:36:19.365Z&end=2017-06-21T08:37:11.327Z"},
"begin":"2017-06-21T08:36:19.365Z",
"end":"2017-06-21T08:37:11.327Z",
"channel":"cam2",
"suspend":false,

"time_elapsed":1.9881,
"bytes_received":12975144,
"status":"completed",
"last_frame":"2017-06-21T08:37:11.303311111083Z",
"status_changed":"2019-09-25T15:52:04.0027018Z"

}

This example shows the status for a successfully completed replicaiton task. 12975144 bytes
were replicated in 1.99 seconds into channel cam2 of the video storage.

3.7.3 Manage status of replication task

Request purpose

Change the status of replication task: put it on hold, or return to the queue, or cancel

Request URL and applicable methods

POST http://servername:port/v1/svc/replsinkN /task/TASK_ID

Request parameters

TASK_ID – an identifier of the the replication task to retreive information for. Request body
should be a JSON object describing the action for the replication task, see below.

Response syntax

The HTTP body of this request should be a JSON object of the form

{ "command": "suspend" | "resume" | "cancel" }

The task may reside in one of six statuses: queued, running, suspended, completed,
cancelled1 and failed. First three statuses are transitional. The task is created in sta-
tus queued (or suspended, if respective flag is set to true upon task creation). When a free
replication worker is encountered, it finds a queued task and starts its execution; at this mo-
ment the queued task status is changed to running. A running task can fail or complete
successfully, – in that case it would transit to the status failed or completed. While running,
a task can be suspended or canceled. A task which is suspended, can also be canceled; or it

1Which was misspelled as canceled in Viinex builds prior to 2.0.0.326 but fixed after that. The backwards
compatibility with misspelled status name “canceled” was not preserved.

129

https://viinex.com/

User’s Guide Viinex 3.0

can be queued again (which means that over time, once a free worker is found for that task, it
would become running).

This HTTP call serves for the purpose of changing the task status. Respective values of the
command property mean: suspend a task – to pause its execution. Note that in general case
it’s not always possible to correctly suspend a task, because the connection to the replication
source would not necessarily be able to preserve the context. It’s safe though to suspend a
task which was queued, but, due to the lack of free workers in replication sink, was not yet
put into running status.

To resume a task means, respectively, to queue the task which was previously suspended or
which was created with suspended flag set to true. After the task is resumed, it takes the last
place in the queue. That is, in the situation when there is a lack of free replication workers
and a number of queued tasks, the suspension and further resuming of a task effectively places
this task to the end of the queue.

When the cancel command is issued for a task, the data transmission for such task is termi-
nated, and the task is marked as “cancelled”. A cancelled task cannot be started over, paused
or queued again; it is one of final states. Cancelled task can only be deleted (see section 3.7.4).

Remarks

3.7.4 Remove a replication task

Request purpose

Remove replication task which is already finalized from the queue of replication sink

Request URL and applicable methods

DELETE http://servername:port/v1/svc/replsinkN /task/TASK_ID

Request parameters

TASK_ID – an identifier of the the replication task to be removed.

Remarks

Only the task which is in one of the final states, – that is, completed, or cancelled, or failed,
– can be removed. An attempt to remove a running, queued or suspended task would result
in an error. Therefore to forcibly terminate a task, one needs to cancel it first, and then to
remove this task from the queue.

Also note that the queue is not persistent. Finalized tasks stay in the memory of replicaiton
sink just for API consistence. If an instance of Viinex 3.0 is restarted, all previously queued
replication tasks would be lost.

130

https://viinex.com/

User’s Guide Viinex 3.0

3.7.5 Enumerate all replication tasks

Request purpose

Get all tasks from the managed replication sink

Request URL and applicable methods

GET http://servername:port/v1/svc/replsinkN /task

Request parameters

none

Response syntax

Upon success, a JSON dictionary is returned, whose keys are identifiers of the tasks, and values
are the status information objects for respective tasks, as described in 3.7.2:

{
TASK_ID_1: JSON,
TASK_ID_2: JSON,
...
TASK_ID_N: JSON

}

For instance, the output to this HTTP request could be as follows:

$ curl ’http://localhost:8880/v1/svc/replsink1/task’ -X GET
{

"1":{"id":"1","origin":..., ...,"bytes_received":12975144},
"2":{"id":"2","origin":..., ...,"bytes_received":null},

}

3.7.6 Get the timeline from a VMS channel

Request purpose

Acquire the information on video recordings stored in a third-party video archive for a specific
VMS channel

Request URL and applicable methods

GET http://servername:port/v1/svc/vmschanN /timeline

131

https://viinex.com/

User’s Guide Viinex 3.0

Request parameters

Optional parameters begin and end

Response syntax

The timeline call allows a client to acquire the timeline of an external video archive for specific
video channel. Optional parameters begin and end, both of timestamp type, may be used to
indicate the interval of interest. Depending on undelying VMS implementation, this may save
resources and speed up the execution of this request.

Upon success, the response to this request is a JSON array containing timeline intervals; each
interval is encoded as a JSON array of exactly 2 elements:

[[TIMESTAMP_1_BEGIN, TIMESTAMP_1_END],
[TIMESTAMP_2_BEGIN, TIMESTAMP_2_END],
...
[TIMESTAMP_N_BEGIN, TIMESTAMP_N_END]]

Note that this information can be lengthy to obtain, depending on the underlying VMS im-
plementation. Viinex 3.0 does not perform any caching for this call.

3.8 Snapshots

3.8.1 Get a snapshot from the snapshot source

Request purpose

Get an image containing the snapshot from the specified video source which implements snap-
shots.

Request URL and applicable methods

GET http://servername:port/v1/svc/sourceN/snapshot

to acquire a snapshot from a live video source, or

GET http://servername:port/v1/svc/storageM/sourceN/snapshot

to extract a single frame from a video archive

Request parameters

All parameters are optional: timestamp, cached, scale, width, height, roi. See remarks for
details.

132

https://viinex.com/

User’s Guide Viinex 3.0

Response example

curl http://localhost:8880/v1/svc/raw0/snapshot

Gets the JPEG snapshot image from raw video source raw0.

curl ’http://localhost:8880/v1/svc/stor0/cam2/snapshot?scale=3&cached=10’

Gets the first frame of 10th most recent archive fragment for source cam2 within video archive
stor0. Downscale it 3 times in each dimension.

curl ’http://localhost:8880/v1/svc/stor0/cam1/snapshot?roi=(0.5,0.5,0.7,0.8)\
&height=50×tamp=1505678400000’

Extract the frame with timestamp 1505678400000 (September 17, 2017 8:00:00 PM UTC) for
video source cam1 within video archive stor0. Crop the image to the ROI with geometry
(0.5, 0.5, 0.7, 0.8); scale the result to have height of 50 pixels, preserving aspect ratio.

Remarks

There are two types of requirements that may be established when the call for acquiring a
snapshot is issued: these are temporal and spatial requirements.

Temporal requirements are most useful when a frame from the video archive is requested. Two
mutually exclusive parameters may set the temporal requirement: timestamp or cached. The
timestamp parameter should be a string in ISO 8601 date and time format2, or an integer
number equal to the number of milliseconds elapsed since UNIX epoch (midinght of January
1st, 1970) till the moment when the video frame that should be extracted was shot. If this
parameter is given, Viinex 3.0 extracts the minimal video fragment which includes requested
moment, finds the requested video frame, and returns it. Note that if the requested moment
is absent in the video archive, Viinex 3.0 returns an error. The cached=N parameter, when
used in request to a video archive, instructs Viinex 3.0 to extract a first frame from Nth most
recent video fragment written so far to the video archive. This is a cheap and easy way to
produce an overview of a video archive contents. In particular, the parameter cached=0 which
is equivalent to not specifying temporal-related parameters at all, – returns the first frame
from the most recent video fragment written to the archive.

When given in the snapshot request to a live source, the only allowed temporal-related require-
ments are the either the absence of parameters, or the presence of parameter cached=0. The
difference between the two cases is how the last obtained and cached snapshot for that live
source will be used in this request. When no parameters are given, Viinex 3.0 checks how long
ago the snapshot for the queried live source was obtained for the last time. If it was obtained
within a reasonable period, the cached snapshot is returned. Otherwise, if the previously
obtained snapshot is considered “stalled”, the new one is acquired from data source, cached,
and returned to the client. However, if the parameter cached=0 is present in the request, the
snapshot is obtained from data source unconditionally, no matter how new the snapshot which

2In particular, the format should be of the form "YYYY-mm-ddTHH:MM:SS.fffZ", where YYYY is the gregorian
year number, four digits; mm is 1-based month number, two digits; dd – 1-based day number in month, two
digits; HH – hour from 0 to 23, two digits; MM – minute number from 0 to 59, two digits; SS – seconds, from
0 to 59, two digits; .fff – optional point and fractional portion of second, from 1 to 6 digits; ’T’ and ’Z’ are
letters, ’-’ and ’:’ are dashes and semicolons on their respective fixed positions.

133

https://viinex.com/

User’s Guide Viinex 3.0

already present the cache is. Note that this operation typically involves time-consuming I/O
to other devices like IP cameras.

Spatial requirements for obtaining a snapshot may be given by means of parameters scale,
width/height and roi. All of them are optional; of none is given, the original image is
returned. The roi parameter may be given independently from other spatial requirements.
This parameter should have the form of (L,T,R,B) – four comma-separated floating-point
numbers, denoting coordinates of the left-top and right-bottom corners of ROI (region of
interest) to crop from original image. All that numbers are expected to be in relative units, in
the range [0, 1], where 1 means maximum possible value which is equal to original image width
for L,R or height for T,B. For example, consider the parameter roi=(0.2,0.3,0.55,0.45).
ROI width and height yields 0.35 and 0.15 respectively. If original image size is 800×600, then
ROI left-top corner is (160, 180), and ROI size is 280× 90 (measured in pixels on the original
image).

The scale=N parameter instructs Viinex 3.0 to downscale the image, reducing its size 𝑁 times
in each dimension (to preserve the aspect ratio). The value 𝑁 should be an integer.

As an alternative to parameter scale, the parameter width or height, or both, may be given.
In the presence of any of that two parameters, Viinex 3.0 is instructed to resize the output
image so that it has at least specified width, or height, or both, if both are given. Note that
Viinex 3.0 preserves the aspect ratio of the image, no matter what spatial-related parameters
are specified. If only width or only height is set, – Viinex 3.0 resizes the resulting image to
have the specified size in corresponding dimension, – and the second dimension, which is not
specified, is chosen so that the aspect ratio is preserved, so that the picture is not distorted.
However when both width and height are set, Viinex 3.0 scales the output image so that one
of resulting dimenstions exactly matches specified value (width or height), while the second
one is greater or equal to the specified value (height or width, respectively). For example,
if the original image size is 800 × 600, and scale=4 specified, the resulting image will have
the size of 200 × 150. If, instead, the parameter width=500 is specified, the image will be
scaled by factor 5/8 times to have width equal to 500, and the corresponding height will be
5 * 600/8 = 375. However if both width=320&height=200 are specified, Viinex 3.0 would
compute corresponding scale factors to match specified width, which is 320/800 = 0.4, and
height, which is 200/600 = 0.(3), and choose the bigger one. The scale factor of 0.4 will be
applied, and the resulting image will get the size of 320× 240 instead of requested 320× 200.

Note that width/height set of parameters is applied “after” the roi parameter, that is –
corresponding scale factors are computed for the cropped image to match the requested size,
not the original one. This should save users effort in practical situations when a cropped image,
showing the required ROI only, should fit certain space in a report form or in a GUI.

3.9 Overlay

3.9.1 Clear overlay

Request purpose

Clear the content of overlay number K which is rendered over video for raw video source or
video renderer rawvideoN.

134

https://viinex.com/

User’s Guide Viinex 3.0

Request URL and applicable methods

POST http://servername:port/v1/svc/rawvideoN/overlay/K/clear

Request parameters

Overlay number K – a zero-based integer, an index of the overlay to be cleared, according to
the configuration of the video source. Can be omitted if there is only one overlay configured.

Response example

curl http://localhost:8880/v1/svc/raw0/overlay/1/clear -X POST

clears the second overlay data of the video source raw0.

3.9.2 Change overlay bitmap

Request purpose

Change the overlay image rendered over video for raw video source or video renderer rawvideoN.

Request URL and applicable methods

POST http://servername:port/v1/svc/rawvideoN/overlay/K/bmp

or

POST http://servername:port/v1/svc/rawvideoN/overlay/K

with corresponding Content-Type header of value image/x-ms-bmp.

Request parameters

Overlay number K – a zero-based integer, an index of the overlay to be set, according to the
configuration of the video source. Can be omitted if there is only one overlay configured.

The body of request should contain the BMP data to be set as overlay image.

Response example

$ curl http://localhost:8880/v1/svc/raw0/overlay/0/bmp \
-X POST --data-binary @overlay.bmp

A UNIX command to set the image for the first overlay on the video source raw0 to the image
in file overlay.bmp.

135

https://viinex.com/

User’s Guide Viinex 3.0

3.9.3 Change overlay HTML

Request purpose

Change the overlay HTML rendered over video for raw video source or video renderer rawvideoN.

Request URL and applicable methods

POST http://servername:port/v1/svc/rawvideoN/overlay/K/html

or

POST http://servername:port/v1/svc/rawvideoN/overlay/K

with corresponding Content-Type header of value text/html.

Request parameters

Overlay number K – a zero-based integer, an index of the overlay to be set, according to the
configuration of the video source. Can be omitted if there is only one overlay configured.

width – the width of bitmap to render HTML to.

height – the height of bitmap to render HTML to.

zoom – zoom to apply to HTML when rendering.

The body of request should contain the HTML data to render and set as overlay image.

Response example

$ (echo ’<body bgcolor="#808080">’; date; echo "</body>") | \
curl ’http://localhost:8880/v1/svc/raw0/overlay/html?zoom=2&width=300’ \

-X POST --data-binary @-

a UNIX command to set the first and only overlay (K parameter is omitted from the path)
to current date and time. HTML is rendered to the bitmap of 300 pixels wide; zoom of 2x is
applied. The height of bitmap is chosen automatically by HTML renderer. HTML text specifies
backgound color “#808080” (gray) which can be used as colorkey value [128,128,128] in
overlay settings, as described in 2.4.5.

3.10 Video renderer

When published under the Viinex 3.0 web server, the video renderer exposes a number of
programming interfaces, namely – a video source interface, a live snapshots source interface,
an overlay control interface, and a layout control interface. Respective programming interfaces
share the requests syntax with other objects and are described in sections 3.4, 3.8, 3.9 and
3.11.

136

https://viinex.com/

User’s Guide Viinex 3.0

3.11 Layout control

3.11.1 Get the names of linked video sources

Request purpose

Obtain the sorted list of names video sources linked with this instance of video renderer.

Request URL and applicable methods

GET http://servername:port/v1/svc/rendererN/sources

Request parameters

None.

Response syntax

A JSON array of strings is returned.

Response example

$ curl -X GET http://localhost:8880/v1/svc/rend0/sources

["cam1","cam2","cam3"]

The list of three video sources is returned. In the request for layout control, see section 3.11.2,
these video sources should be referred to in the "input" parameter by their zero-based index
in this array. For instance, "cam3" video source should be referred to as "input":2.

3.11.2 Set the layout for the video renderer

Request purpose

Set the image size, background color and viewports parameters for rendering in the resulting
video stream.

Request URL and applicable methods

POST http://servername:port/v1/svc/rendererN/layout

137

https://viinex.com/

User’s Guide Viinex 3.0

Request parameters

Layout description should be passed as POST request body in JSON format.

Response syntax

The syntax of layout description is given in section 2.4.8. It matches the syntax of layout
section in the configuration of video renderer with the exception that it is illegal to specify the
background image. For that, one should use an explicit API call, see below.

Response example

A request can be sent using the CURL utility:

curl -X POST http://localhost:8880/v1/svc/renderer0/layout
--data-binary @lay.json

where the file lay.json may contain the following text:

{
"size": [1280, 960],
"background": [99,0,55],
"viewports": [

{
"input": 0,
"dst": [0.1,0.1,0.7,0.7]

},
{

"input": 1,
"border": [0,0,255],
"dst": [0.6,0.05,0.95,0.4]

},
{

"input": 2,
"border": [0,255,0],
"dst": [0.6,0.45,0.95,0.9]

},
{

"input": 2,
"border": [255,0,0],
"src": [0.1,0.3,0.6,0.6],
"dst": [0.05,0.45,0.55,0.9]

}
]

}

Here, the video renderer is instructed to set output video size to 1280×960, set the background
color to burgundy, and shows three video sources in four viewports. The fourth viewport shows
the same video source as the thrid, but with a “digital zoom”: a small ROI is selected on the
source video (by means of specifying the "src": [0.1,0.3,0.6,0.6] parameter) to be shown

138

https://viinex.com/

User’s Guide Viinex 3.0

in that viewport. Also, each viewport except the first one is enclosed by a border of its own
color (blue, green and red for the 2nd, 3rd and 4th viewport respectively).

3.11.3 Set the background color or background image

Request purpose

Set the background color or the background image for the video renderer3.

Request URL and applicable methods

POST http://servername:port/v1/svc/rendererN/background or
POST http://servername:port/v1/svc/rendererN/background/color or
POST http://servername:port/v1/svc/rendererN/background/bmp or
POST http://servername:port/v1/svc/rendererN/background/jpeg

Request parameters

None.

Response syntax

The body of the request should contain an image for the background in JPEG or BMP format,
or a color for solid background in form of JSON array of 3 integer elements in range 0 . . . 255
for red, green and blue component.

In the first case of URL /rendererN/background the actual type of request is inferred from the
MIME type of the body, which should be passed in the Content-Type HTTP header of the
request. In case of /rendererN/background/color, /rendererN/background/bmp and /render-
erN/background/jpeg requests the MIME type header of the request is ignored; the body of
the request is expected to be of the format matching the request URL.

Response example

Set the solid color of the background for the video renderer:

$ curl -X POST http://localhost:8880/v1/svc/rend0/background/color \
--data ’[66,11,99]’

or

$ curl -X POST http://localhost:8880/v1/svc/rend0/background \
-H ’Content-Type: application/json’ --data ’[66,11,99]’

3This call is mainly to allow setting the background image for the video renderer from the API, taking into
account that in the configuration of renderer, the background image is set with the layout. However, since
there is a call for setting the layout in the API, and it takes a JSON body, it would be inconvenient to pass
the background in the same call, – an explicit API call for setting the background was introduced.

139

https://viinex.com/

User’s Guide Viinex 3.0

Set the background image from the BMP file:

$ curl -X POST http://localhost:8880/v1/svc/rend0/background/bmp \
--data-binary @background.bmp

or

$ curl -X POST http://localhost:8880/v1/svc/rend0/background \
-H ’Content-Type: image/x-ms-bmp’ --data-binary @background.bmp

Set the background image from the JPEG file:

$ curl -X POST http://localhost:8880/v1/svc/rend0/background/jpeg \
--data-binary @background.jpg

or

$ curl -X POST http://localhost:8880/v1/svc/rend0/background \
-H ’Content-Type: image/jpeg’ --data-binary @background.jpg

3.11.4 Set or clear the image for viewports of disconnected video
sources

Request purpose

Set or clear the image for the viewports on video renderer corresponding to the videosources
that are disconnected.

Request URL and applicable methods

POST http://servername:port/v1/svc/rendererN/nosignal or
POST http://servername:port/v1/svc/rendererN/nosignal/bmp or
POST http://servername:port/v1/svc/rendererN/nosignal/jpeg

Request parameters

None.

Response syntax

The body of the request should contain an image to be displayed in the viewports for discon-
nected video sources. The image should be in JPEG or BMP format.

In the first case of URL /rendererN/nosignal the actual type of request is inferred from the
MIME type of the body, which should be passed in the Content-Type HTTP header of the
request. For the first request, the Content-Type can be omitted and the request body can

140

https://viinex.com/

User’s Guide Viinex 3.0

be empty; this would indicate that the image for viewports with no signal should be reset.
When the image for disconnected video source indication is reset (or not set), the viewports
corresponding to such video sources are not displayed on the layout.

In case of /rendererN/nosignal/bmp and /rendererN/nosignal/jpeg requests the MIME type
header of the request is ignored; the body of the request is expected to be of the format
matching the request URL.

Response example

Set the image for indication of a disconnected video source from the BMP file:

$ curl -X POST http://localhost:8880/v1/svc/rend0/nosignal/bmp \
--data-binary @nosignal.bmp

or

$ curl -X POST http://localhost:8880/v1/svc/rend0/nosignal \
-H ’Content-Type: image/x-ms-bmp’ --data-binary @nosignal.bmp

Set the image for indication of a disconnected video source from the JPEG file:

$ curl -X POST http://localhost:8880/v1/svc/rend0/nosignal/jpeg \
--data-binary @nosignal.jpg

or

$ curl -X POST http://localhost:8880/v1/svc/rend0/nosignal \
-H ’Content-Type: image/jpeg’ --data-binary @nosignal.jpg

Reset (clear) the image for indication of a disconnected video source:

$ curl -X POST http://localhost:8880/v1/svc/rend0/nosignal

3.12 Stream switch

3.12.1 Get the names of linked video sources

Request purpose

Obtain the sorted list of names video sources linked with this instance of stream switch.

Request URL and applicable methods

GET http://servername:port/v1/svc/streamswitchN/sources

141

https://viinex.com/

User’s Guide Viinex 3.0

Request parameters

None.

Response syntax

A JSON array of strings is returned.

Response example

$ curl -X GET http://localhost:8880/v1/svc/vcam1/sources

["cam1","cam2","cam3"]

The list of three video sources is returned. In the request for switching the output, see sec-
tion 3.12.2, the index of a video source identifier in this array should be passed in order to
switch the output to respective stream.

3.12.2 Switch to a specific stream

Request purpose

Set the specific input stream as the output stream of the stream switch object.

Request URL and applicable methods

POST http://servername:port/v1/svc/streamswitchN

Request parameters

None.

Response syntax

The body of the request should have the form of

{
"input": INT

}

where the parameter input should take the value of zero-based index of requested video source
identifier in the sorted list of input video sources linked to this instance of stream switch, as
described in section 3.12.1.

Note that this API call is an implementation of an abstract Updateable interface described in
section 3.21.2.

142

https://viinex.com/

User’s Guide Viinex 3.0

Response example

Given the example from section 3.12.1, the request

$ curl -X POST http://localhost:8880/v1/svc/vcam1 --data ’{"input":2}’

would make the stream switch vcam1 output the video from the source cam3.

3.13 PTZ control

PTZ control programming interface provides basic access to the pan-tilt-zoom functionality of
an ONVIF device. The API acts merely as a simplifying proxy to that implemented by ONVIF
device, as specified in [12]. While the original specification is based on SOAP, Viinex 3.0 uses
parameters in HTTP requests and JSON where complex data structures are returned to the
client. Other differences from the original specification is that Viinex 3.0 currently does not
support certain features, most noticeable of which are preset tours.

Viinex 3.0 does not perform caching of information regarding the PTZ functionality. Neither
the clients requests are checked or filtered. All client requests are translated to the device
(except the “get node description”), and device’s response to each request is translated to
respective client.

3.13.1 Get the PTZ node description

Request purpose

Obtain the name and token of the PTZ node corresponding to the media profile selected at the
instance of Viinex 3.0 implementation of ONVIF device. Get the numeric limits for motion
spaces of the PTZ device.

Request URL and applicable methods

GET http://server:port/v1/svc/onvifN/ptz

Request parameters

none

Response syntax

The response to this call is a JSON object of the form:

{
"token": STRING,
"name": STRING,

143

https://viinex.com/

User’s Guide Viinex 3.0

"max_presets": INT,
"home": {

"supported": BOOLEAN,
"fixed": BOOLEAN

},
"limits": [

{
"type": "absolute" | "relative" | "continuous",
"axis": "PanTilt" | "Zoom",
"x": [FLOAT, FLOAT],
"y": [FLOAT, FLOAT]

},
...

]
}

Here, token is a short string identifying the PTZ node at the ONVIF device. name is a human-
readable name of that PTZ node. max_presets is an indeger that denotes the maximum
number of preset positions that the PTZ device is capable of storing. The home.supported
is a boolean flag meaning whether the “home” position is supported at the PTZ device. The
home.fixed denotes whether the “home” position is fixed and cannot be changed.

The limits is a JSON array containing the structures of three or four elements, type, axis,
x and, when axis equals to the value of "PanTilt", — y. The type field denotes the motion
type supported by the PTZ device.4 The axis field denotes the axis (or axes) along which
the motion can be performed. The possible values are PanTilt for pan and tilt, and Zoom
for zoom. The x and y properties define the limits (maximum and minimum values) for the
motion of specified type along specified axis/axes. One range, x is specified for the case of one
axis, Zoom, while two ranges, x and y are specified for the case of two axes, PanTilt.

For more information please refer to the ONVIF PTZ Service specification [12].

Response example

An example of real response to this call is given below:

$ curl http://localhost:8880/v1/svc/cam3/ptz
{

"token": "000",
"name": "PTZNode_Channel1",
"max_presets": 80,
"home": {

"fixed": false,
4There are three motion types distinguished by ONVIF PTZ specification, which are "absolute",

"relative" and "continuous". The “absolute” motion type means the motion that happens when the device
accepts an instruction to move to some position with specific coordinates, no matter what position is current.
The coordinates with that command denote the position of PTZ device. Whenever a command to move to
an absolute position is given, the device shall move to the same position with specified coordinates. The
“relative” motion type is the motion that occurs when the device accepts a command to move to a specific
distance with respect to its current position. The coordinates with such command denote the displacement of
the PTZ device. The “continuous” motion type denotes the motion without a specific destination but with a
specific direction and velocity. The coordinates with the command for continuous motion are measured in the
units of velocity.

144

https://viinex.com/

User’s Guide Viinex 3.0

"supported": true
},
"limits": [

{
"type": "absolute",
"axis": "PanTilt",
"x": [-1,1],
"y": [-1,1]

},
{

"x": [0,1],
"type": "absolute",
"axis": "Zoom"

},
{

"type": "relative",
"axis": "PanTilt",
"x": [-1,1],
"y": [-1,1]

},
{

"type": "relative",
"axis": "Zoom",
"x": [-1,1]

},
{

"type": "continuous",
"axis": "PanTilt",
"x": [-1,1],
"y": [-1,1]

},
{

"type": "continuous",
"axis": "Zoom",
"x": [-1,1]

}
]

}

Here, all possible combinations of motion type and axis are suppted. The reported ranges
for pan and tilt position, displacement and velocity are all equal to interval [−1, 1] (in their
respective units), as well as the ranges for zoom displacement and velocity. The reported range
for zoom range is [0, 1].

3.13.2 Get presets

Request purpose

Get the tokens and human-readable names for the presets stored in the PTZ device’s memory.

145

https://viinex.com/

User’s Guide Viinex 3.0

Request URL and applicable methods

GET http://server:port/v1/svc/onvifN/ptz/presets

Request parameters

none

Response syntax

The reponse for this call is a JSON array of typles (pairs) of strings, of which the first denotes
preset’s token (an identifier within this PTZ device), while the second is a human-readable
name of the preset:

[
[STRING_id_1, STRING_name_1],
...
[STRING_id_k, STRING_name_k],
...

]

Response example

An example of the reponse to the get presets API call is given below:

$ curl http://localhost:8880/v1/svc/cam3/ptz/presets
[["1","Preset1"],["2",""],["5","test preset"]]

Here, three presets are defined at the device, with identifiers “1”, “2” and “5”.

3.13.3 Create a preset

Request purpose

Define a new preset at the PTZ device, remembering the current position of the device.

Request URL and applicable methods

PUT http://server:port/v1/svc/onvifN/ptz/preset?name=STRING

Request parameters

name – an optional URL parameter

146

https://viinex.com/

User’s Guide Viinex 3.0

Response syntax

The name is an optional URL string parameter, which defines the human-readable name of the
preset.

The response to this request is a JSON object containing one string property:

{"token":STRING}

The value of token property is the identifier given to the new preset by the PTZ device.

Response example

An example of creating a preset without a name:

$ curl -X PUT ’http://localhost:8880/v1/svc/cam3/ptz/preset’
{"token":"6"}

Creating a preset with a name:

$ curl -X PUT ’http://localhost:8880/v1/svc/cam3/ptz/preset?name="Front door"’
{"token":"7"}

3.13.4 Remove a preset

Request purpose

Remove an existing preset from the PTZ device’s memory

Request URL and applicable methods

DELETE http://server:port/v1/svc/onvifN/ptz/preset/TOKEN

Request parameters

TOKEN – an identifier of the preset to remove

Response syntax

An identifier (token) of the preset to be removed should be given as a part of the URL path.

The call returns HTTP code 200 and an empty JSON value ([]) in the response body on
success, or error code 500 with error text in the response body on failure.

147

https://viinex.com/

User’s Guide Viinex 3.0

Response example

$ curl -X DELETE ’http://localhost:8880/v1/svc/cam3/ptz/preset/2’
[]

Here, the preset with identifier “2” is successfully removed from the ONVIF device configured
in Viinex 3.0 as cam3.

3.13.5 Update a preset

Request purpose

Update an existing preset, to hold a current position of the PTZ device. Optionally change
the name of the preset.

Request URL and applicable methods

POST http://server:port/v1/svc/onvifN/ptz/preset/TOKEN?name=STRING

Request parameters

TOKEN – an identifier of the preset to remove. name – an optional parameter, a new name
for the preset.

Response syntax

An identifier (token) of the preset to be updated should be given as a part of the URL path.
The URL parameter name can be given to set the new name of the preset.

The call returns HTTP code 200 and an empty JSON value ([]) in the response body on
success, or error code 500 with error text in the response body on failure.

Response example

$ curl -X POST ’http://localhost:8880/v1/svc/cam3/ptz/preset/2?name="Reception"’
[]

Here, the preset with identifier “2” is successfully updated. The new name of the preset was
set.

3.13.6 Go to a specified preset

Request purpose

Change the PTZ device position to the position stored as a preset with a specified identifier

148

https://viinex.com/

User’s Guide Viinex 3.0

(a token).

Request URL and applicable methods

POST http://server:port/v1/svc/onvifN/ptz/goto/preset/TOKEN

Request parameters

TOKEN – an identifier of the preset to recall.

Response syntax

An identifier (token) of the preset to recall should be given as a part of the URL path.

The call returns HTTP code 200 and an empty JSON value ([]) in the response body on
success, or error code 500 with error text in the response body on failure.

Response example

$ curl -X POST http://localhost:8880/v1/svc/cam3/ptz/goto/preset/5
[]

Here, the device is moved to a position previously stored as preset with identifier “5”.

3.13.7 Update the “home” position

Request purpose

Update the “home” position, to hold a current position of the PTZ device.

Request URL and applicable methods

POST http://server:port/v1/svc/onvifN/ptz/home

Request parameters

none

Response syntax

The call returns HTTP code 200 and an empty JSON value ([]) in the response body on
success, or error code 500 with error text in the response body on failure.

149

https://viinex.com/

User’s Guide Viinex 3.0

Response example

$ curl -X POST ’http://localhost:8880/v1/svc/cam3/ptz/home’
[]

Here, the “home” position is successfully updated for the ONVIF device configured as cam3 in
a Viinex 3.0 instance.

3.13.8 Go to the “home” position

Request purpose

Change the PTZ device position to the position stored as the “home” position.

Request URL and applicable methods

POST http://server:port/v1/svc/onvifN/ptz/goto/home

Request parameters

none

Response syntax

The call returns HTTP code 200 and an empty JSON value ([]) in the response body on
success, or error code 500 with error text in the response body on failure.

Response example

$ curl -X POST http://localhost:8880/v1/svc/cam3/ptz/goto/home
[]

Here, the “home” position is successfully recalled on the ONVIF device configured as cam3 in
a Viinex 3.0 instance.

3.13.9 Get the coordinates of a current position

Request purpose

Obtain the absolute coordinates of current position of the PTZ device.

150

https://viinex.com/

User’s Guide Viinex 3.0

Request URL and applicable methods

GET http://server:port/v1/svc/onvifN/ptz/position

Request parameters

none

Response syntax

The call returns HTTP code 200 and an JSON value of the form

[[PAN, TILT], ZOOM]

in the response body on success, or error code 500 with error text in the response body on
failure.

Note that for some PTZ devices the [PAN,TILT] or the ZOOM part may be null.

Response example

$ curl -X GET http://localhost:8880/v1/svc/cam3/ptz/position
[[-0.22810589,0.9522],0]

3.13.10 Move the PTZ device

Request purpose

Move the PTZ device into an arbitrary position defined by an absolute coordinates or relative
displacement, or start continuous motion in a specified direction

Request URL and applicable methods

POST http://server:port/v1/svc/onvifN/ptz/move/TYPE?pan=FLOAT&tilt=FLOAT&zoom=FLOAT

Request parameters

TYPE – a string taking one of three values: absolute, relative or continuous. pan, tilt,
zoom – optional floating-point parameters.

Response syntax

The requested motion type – one of three possible values, absolute, relative or continuous,
– should be specified in the URL path. The type should match one of supported motion types,
as reported by the get node description request, see section 3.13.1.

151

https://viinex.com/

User’s Guide Viinex 3.0

The optional floating-point parameters pan, tilt and zoom define the position, translation
or velocity for the respective motion types, of the requested movement. All three of that
parameters may be specified. If the zoom is not specified, only pan and tilt movement is
performed (keeping the current zoom). If the pan or tilt parameter is omitted, only the zoom
change is performed (keeping the current pan and tilt position). In other words, pan and tilt
parameters should be given together. It it necessary to specify both of them to change the pan
and/or tilt position of the PTZ device.

The values of the pan, tilt and zoom parameters should be within the range for respective
motion type and for respective motion axis, as reported by the get node descrption request
described in section 3.13.1.

The call returns HTTP code 200 and an empty JSON value ([]) in the response body on
success, or error code 500 with error text in the response body on failure.

Response example

Move the PTZ device into an absolute position, specifying pan, tilt and zoom coordinates:

$ curl -X POST "http://localhost:8880/v1/svc/cam3/ptz/move/absolute?\
pan=0.345&tilt=0.333&zoom=0"
[]

(Here and below the backslash denotes the line break in a UNIX command).

Increase the zoom of the PTZ camera by 10 percents, keeping the current pan and tilt position:

$ curl -X POST ’http://localhost:8880/v1/svc/cam3/ptz/move/relative?zoom=0.1’
[]

Change the pan of the PTZ camera by 15 percents, counterclockwise (note the mandatory
complimentary tilt=0):

$ curl -X POST "http://localhost:8880/v1/svc/cam3/ptz/move/relative?\
pan=-0.1&tilt=0"
[]

Start decreasing the tilt of the PTZ camera, slowly, at 1/5 of the maximum possible speed:

$ curl -X POST "http://localhost:8880/v1/svc/cam3/ptz/move/continuous?\
pan=0&tilt=-0.2"
[]

3.13.11 Stop the PTZ motion

Request purpose

Stop the current preset tour or previously requested continuous motion.

152

https://viinex.com/

User’s Guide Viinex 3.0

Request URL and applicable methods

POST http://server:port/v1/svc/onvifN/ptz/stop

Request parameters

none

Response syntax

The call returns HTTP code 200 and an empty JSON value ([]) in the response body on
success, or error code 500 with error text in the response body on failure.

Response example

$ curl -X POST ’http://localhost:8880/v1/svc/cam3/ptz/stop’
[]

Here, the motion performed by ONVIF camera cam3 is successfully stopped.

3.14 WebRTC signaling

The WebRTC server, whose configuration is described in section 2.1.18, exposes a few endpoints
for HTTP remote calls. These include the calls for creation of a new WebRTC session (and
getting so-called SDP offer for it, providing a newly created session with an SDP answer from
a remote peer, and for dropping a session. There is also a call for getting a general information
on the WebRTC server object.

3.14.1 Obtain a general information on WebRTC server

Request purpose

Get the information on the video sources linked with the specified WebRTC server object, and
the current number of active sessions (peer connections).

Request URL and applicable methods

GET http://server:port/v1/svc/webrtcN

Request parameters

none

153

https://viinex.com/

User’s Guide Viinex 3.0

Response syntax

The call returns HTTP code 200 and a JSON object containing two members: session,
containing an integer number of currently active sessions, and live, containing an array of
strings – identifiers of live video sources linked to this instance of WebRTC server object.

Response example

$ curl -X GET ’http://localhost:8880/v1/svc/webrtc0’
{"sessions":2,"live":["cam1","cam2","cam3"]}

Here, the object webrtc0 reports of 2 currently active peer connections. There are 3 live
sources associated with that webrtc0 object, with identifiers cam1, cam2, cam3.

3.14.2 Create a new session

Request purpose

Create a new WebRTC session. In jargon specific to WebRTC and applications running in
browsers that would rougly correspond to a peer connection.

Request URL and applicable methods

PUT http://server:port/v1/svc/webrtcN/sessionID

Request parameters

sessionID – a random string, like UUID, identifying the session, generated by client.

Response syntax

The body of this request should be a JSON document of format described in section 3.14.3.

The call returns HTTP code 200 and a body of MIME type “application/sdp”, containing the
SDP offer.

Response example

The next CURL command creates a new session in Viinex 3.0 WebRTC server with identifier
webrtc0. The new session receives identifier d21a364e-33a0-4f00-9f48-d7c2bccac4b9. The
live video source requested in the new session is cam1.

$ curl -X PUT ’http://localhost:8880/v1/svc/webrtc0/\
d21a364e-33a0-4f00-9f48-d7c2bccac4b9’ \
--data ’{ "command": "play", "source": "cam1" }}’

154

https://viinex.com/

User’s Guide Viinex 3.0

Upon success, the Viinex 3.0 responds with HTTP code 200 and the response body of content
type application/sdp similar to the following:

v=0
o=viinex 1550410445215 1550410445215 IN IP4 127.0.0.1
s=-
t=0 0
a=msid-semantic: WMS d21a364e-33a0-4f00-9f48-d7c2bccac4b9
a=range:npt=now-
a=ice-ufrag:3c26
a=ice-pwd:N1SmgmEfUdjwtu2PMcKX/lXq
a=fingerprint:sha-256 22:48:0A:...:22:2F:B9:47:14
a=setup:actpass
a=candidate:a72d0b43 1 UDP 2113929471 192.168.0.70 52400 typ host
a=candidate:ba5ea35a 1 UDP 2113929471 192.168.72.1 52400 typ host
a=candidate:e1df248f 1 UDP 2113929471 192.168.120.1 52400 typ host
a=candidate:9fa9ba78 1 UDP 1677721855 148.251.0.248 52400 typ srflx
m=video 50181 UDP/TLS/RTP/SAVPF 96
c=IN IP4 0.0.0.0
a=rtcp-mux
a=sendonly
a=rtpmap:96 H264/90000
a=fmtp:96 packetization-mode=1;profile-level-id=42e01f
a=ssrc:1 msid:d21a364e-33a0-4f00-9f48-d7c2bccac4b9 cam1
a=ssrc:1 mslabel:d21a364e-33a0-4f00-9f48-d7c2bccac4b9
a=ssrc:1 label:cam1

This SDP document represents an offer from Viinex 3.0 WebRTC server to the remote client
(peer). The client, if it is an application running in the browser, is not required to analyze
this SDP document in any specific way. Rather, the SDP offer should be passed without any
modifications into the RTCPeerConnection.setRemoteDescription() call.

If the request body is an empty JSON object ({}), the WebRTC session is created, but no
video stream is published in it. The RTC connection is automatically kept alive by means of
keepalive STUN packets between Viinex server and a client, but this is the only traffic that
is passing between them in such session. In order to publish some video stream in an empty
RTC session, the API call described in 3.14.5 should be used.

Note that the sessions created by that call are in the state which requires peer to provide an
answer in a timely manner. If it fails to do so within 10 seconds, the newly created session is
considered expired, and resources assiciated with it are freed.

3.14.3 Media data request format

This section describes the format of HTTP request body for those requests to WebRTC server
which have the purpose to create a session (see section 3.14.2) or change the data source for
an existing session (see section 3.14.5).

Video source request for a WebRTC session should be a JSON object with the content as
follows:

{ "command": "play" | "stop"

155

https://viinex.com/

User’s Guide Viinex 3.0

, "cookie": INT
, "source": STRING

| { "name": STRING }
| {}

, "range": "now-" | [TIMESTAMP, TIMESTAMP] | [TIMESTAMP]
, "speed": NUMBER }

The property command instructs the WebRTC session to either begin streaming video data to
peer (value "play"), or stop streaming the data (value "stop"), freeing the resouces accociated
with subscription to video source that might have been translated previously, but preserving
the WebRTC session itself.

The property source can be either a string value, for using a Viinex 3.0 object with respective
name as a video source, or a JSON object with property name and its value holding the name
of Viinex 3.0 object, or an empty JSON object. The latter option may be used to make the
WebRTC session disconnect from a video source that is currently being restreamed.

The property range may take either the pre-defined string value of "now-", which means that
the video source should be used to obtain live stream, or a pair (encoded as JSON array
of 2 elements) of timestamps. The value of range property in form of pair of timestamps is
interpreted as the time interval. For video sources assiciated with a video archive (in particular,
these are video sources in a third-party VMS, see section 2.1.13 for more details), Viinex 3.0
would create a connection to video archive within that third-party VMS instance and try
to obtain a video stream from that archive for specified time interval. The property range
may also take the value of array of lenth 1, which indicates the playback from the timestamp
specified as the only element of the array – to the future. On other words, the syntax range:
[begin] is equivalent to specifying range: [begin, future], where future is some point
in a very distant future.

For archive video sources, the property speed may also be specified to indicate the desired
playback speed.

Besides the above properties, there may be specified an additional integer value cookie. This
value is intended to identify the status of WebRTC session. Indeed, it may take some time
for the session to apply changes requested via HTTP call described in section 3.14.5. An
application may add a unique cookie value to such requests, and then examine the status of
WebRTC session with another HTTP call described in 3.14.6. The status would contain a
cookie value from the most recent WebRTC session change request completed by Viinex 3.0
server.

There is also another syntax for this request, which was introduced initially, when WebRTC-
related functionality was at first implemented in Viinex 3.0. This syntax assumes that session
create or update request has the form of

{"live": STRING}

or

{}

(an empty JSON object). These two forms are equivalent to the session update request of

{

156

https://viinex.com/

User’s Guide Viinex 3.0

"command": "play",
"source": STRING,
"range":"now-"

}

and

{
"command": "stop",
"source": {}

}

respectively, according to the modern syntax described above. The syntax of {"live":STRING}|{}
is considered deprecated, it may be removed from Viinex 3.0 API in the future.

3.14.4 Provide an SDP answer for a session

Request purpose

Provide the WebRTC server with the SDP answer information for a specified session (peer
connection).

Request URL and applicable methods

POST http://server:port/v1/svc/webrtcN/sessionID /answer

Request parameters

webrtcN should be the identifier of the WebRTC server object instance. sessionID should be
the identifier for the session specified by client upon its (session) creation.

Response syntax

The body of this request should contain an SDP document describing the “answer” of a remote
peer. It is required that said SDP answer conains information in ICE candidates generated by
client for itself.

It is required that the client sets the Content-Type header for its request payload to the value
application/sdp.

Upon success, the call returns HTTP status 200 and an empty JSON object. Meanwhile,
having the SDP answer from the peer, the WebRTC starts the ICE connection establishment
procedures, DTLS handshake and media data sending.

Remarks

Generally, the client application, if it is an application running in the browser, is not expected
to be constructing or manipulating the SDP answer to produce it to Viinex 3.0 WebRTC server.

157

https://viinex.com/

User’s Guide Viinex 3.0

Instead, the client application would use the RTCPeerConnection.createAnswer() call which
returns a promise of the SDP data. Usually after that the RTCPeerConnection.selLocalDesc-
ription(). After both the remote and local descriptions are set, the browser starts searching
for ICE candidates. As new candidates are found, the local session description is automatically
updated. Currently the WebRTC implementation in Viinex 3.0 does not support dynamical
update of the list of candidates from the remote peer. It is recommended that the client
application waits for all candidates are gathered, which is indicated by event RTCPeerCon-
nection.onicecandidate(e) with e.candidate==null, and after such event has arrived –
captures the RTCPeerConnection.localDescription.sdp, which represents the peer’s SDP
answer, and sends this data into Viinex 3.0 WebRTC server (by means of the HTTP call being
described in this paragraph).

Response example

$ curl -X POST ’http://localhost:8880/v1/svc/webrtc0/
d21a364e-33a0-4f00-9f48-d7c2bccac4b9/answer’ \
-H ’Content-Type: application/sdp’ --data ’v=0
o=- 6542274758888401078 2 IN IP4 127.0.0.1
s=-
t=0 0
a=msid-semantic: WMS
m=video 59204 UDP/TLS/RTP/SAVPF 96
c=IN IP4 148.251.0.248
a=rtcp:9 IN IP4 0.0.0.0
a=candidate:3661447420 1 udp 2113937151 192.168.0.70 59204 typ host
generation 0 network-cost 999
a=candidate:842163049 1 udp 1677729535 148.251.0.248 59204 typ srflx
raddr 192.168.0.70 rport 59204 generation 0 network-cost 999
a=ice-ufrag:3vtT
a=ice-pwd:kwX8zta+EYN4CFdK+Z7piUry
a=ice-options:trickle
a=fingerprint:sha-256 4E:09:5A:DE:72:92:ED:FB:64:1A:01:EC:80:09:2C:A5:
C4:73:95:84:C6:0D:A7:74:C8:36:1E:99:08:5F:B3:5F
a=setup:active
a=mid:0
a=recvonly
a=rtcp-mux
a=rtpmap:96 H264/90000
a=fmtp:96 level-asymmetry-allowed=1;packetization-mode=1;
profile-level-id=42e01f
’
[]

Here, the WebRTC session d21a364e-33a0-4f00-9f48-d7c2bccac4b9 previously created at
object webrtc0 is provided with an SDP answer. The answer does not contain any information
on media sent by client informs the server that the peer is ready to accept the video stream
using the SRTP over UDP and DTLS. The answer also contains two ICE candidates and an
information on how the DTLS hanshake is going to be performed (that the remote peer is
going to take client TLS role), the fingerprint of the certificate that is to be used by client.

For more information see [22].

158

https://viinex.com/

User’s Guide Viinex 3.0

As it is stated above, the client application needs not go into the details of the SDP docu-
ment, contstruct it or manipulate it in any way. It rather should take the value of property
RTCPeerConnection.localDescription.sdp (at the appropriate moment), and pass its value
to Viinex 3.0 WebRTC server.

3.14.5 Update an existing session

Request purpose

Make an update on what video stream, if any, should be streamed in specified WebRTC session.

Request URL and applicable methods

POST http://server:port/v1/svc/webrtcN/sessionID

Request parameters

sessionID – a string identifying the session which should be updated.

Response syntax

The body of this request should be a JSON document matching the syntax described in
section 3.14.3.

The syntax and semantics of the request body matches those for HTTP call described in
section 3.14.2. A body with some live video source specified in it switches the video stream
within specified session to the selected one. An empty JSON object indicates that a video
streaming within specified WebRTC session should be temporarily shut down, until the next
HTTP call 3.14.5 is issued, or the WebRTC session is destroyed.

Upon success, the call returns HTTP code 200 and a body containing an empty JSON object
or array.

The feature of switching among video streams within an existing WebRTC session provides
applications with capability to build user interfaces with layouts of viewports which can be
promptly switched to display various video sources upon user’s request.

3.14.6 Get session status

Request purpose

Obtain the current status information on an existing WebRTC session.

159

https://viinex.com/

User’s Guide Viinex 3.0

Request URL and applicable methods

POST http://server:port/v1/svc/webrtcN/sessionID

Request parameters

sessionID – a string identifying the session which status should returned. The syntax of
returned WebRTC session status is as follows:

{
"status": "playing" | "stopped",
"cookie": JSON,
"last_frame": TIMESTAMP

}

The status property indicates whether the WebRTC session is streaming media to its peer
("playing"), or it is just open connection but no data is being streamed ("stopped").

The last_frame property may hold the timestamp of the last frame sent by Viinex 3.0 server
to WebRTC peer within selected session. This value may be used to indicate “current position”
at the timeline for video archive playback. Note that this value is reset when the WebRTC
session receives a new "play" command, so it is guaranteed that the last_frame property
holds either the value of timestamp for one of the frames from the requested time interval, or
null, if no frames were sent to the peer yet after the latest play command was initiated by
client. In no case the last_frame holds the timestamp from a frame sequence that was played
previously, before the one which is currently being played.

The value cookie may hold the user-defined integer number. Its purpose is to identify the
status of the WebRTC session and to match the status with recently commands (WebRTC
session update requests) issued by client application. For more information on cookie field
see section 3.14.3.

3.14.7 Gracefully shutdown a WebRTC session

Request purpose

Shutdown an active WebRTC session and free all resources associated with it.

Request URL and applicable methods

DELETE http://server:port/v1/svc/webrtcN/sessionID

Request parameters

webrtcN should be the identifier of the WebRTC server object instance. sessionID should be
the identifier for the session specified by client upon its (session) creation.

160

https://viinex.com/

User’s Guide Viinex 3.0

Response syntax

Upon success, the call returns HTTP status 200 and an empty JSON object.

Remarks

Strictly speaking, graceful shutdown of a session is not necessary for the server to perform
without resource leak. An existing peer is considered disconnected if an instance of Viinex 3.0
WebRTC server fails to get a STUN keepalive response packet from that peer 10 times in a row.
Such packets are sent every 1 second, – so a silently disconnected peer’s session is disposed in
10 seconds after the peer disconnects. However, during that time the media data is still sent
to the peer which may negatively affect the network, especially if the peer stops watching the
video but remains in the same web application on the same network – there is a chance that
such peer will be still receiveing media traffic which he no longer needs. This is why gracefully
shutting down the WebRTC sessions should be considered a recommended practice.

Response example

$ curl -X DELETE ’http://localhost:8880/v1/svc/webrtc0/
d21a364e-33a0-4f00-9f48-d7c2bccac4b9’

Here, the WebRTC session d21a364e-33a0-4f00-9f48-d7c2bccac4b9 previously created at
object webrtc0 is shut down.

3.15 PostgreSQL database

In order to access the events written by the postgres object to the PostgreSQL database,
an HTTP API call is provided. That call enables the web applications to retreive the events
using a simple queries, filtering events by topics and origins, and specifying the time interval
of iterset. No other means for accessing the database from HTTP API are provided. Event log
cannot be changed from an API; neither events can be deleted from the log, nor there are means
to access other tables besides the one which stores Viinex 3.0 builtin events. Accessing other
relations in the DBMS should be made by using Viinex 3.0 builtin scripts. It’s a deliberate
decision that no means for event log modification are provided (neither via HTTP API, nor
via scripting). It is possible, however for Viinex 3.0 scripts to generate immutable events,
which can later be retreived and interpreted by the application as a sequence of state-changing
instructions. This approach can be used, for example, in alarm processing applications.

3.15.1 Get the summary for events stored in PostgreSQL database

Request purpose

Get the brief summary on the number of events, their origins and their topics, being stored in
PostgreSQL database.

161

https://viinex.com/

User’s Guide Viinex 3.0

Request URL and applicable methods

GET http://server:port/v1/svc/pgN/summary

Request parameters

pgN should be the identifier of the posgres object instance.

Optional parameters topic, origin, begin, end may be used to get the summary on specific
time interval, as well as on events of specific origins and topics.

Response syntax

Optional query parameters topic and origin should both be a comma-separated lists of
strings representing event topics and event origin names, respectively. If no topic or origin
parameters are specified, it is assumed that no filtering should be done on respective criteria,
and the summary for events on all topics and/or origins should be retreived.

Optional query parameters begin and end may specify the temporal window for which the
summary should be obtained. If any of these two parameters is omitted, it is assumed that
UNIX epoch should be used as begin or an infinite future should be used as end.

The result of this HTTP request is a JSON array of Viinex 3.0 objects each containing three
properties: origin, topic and count. The meaning of these values is that the pgN database
object contains, in a given temporal window, if it was specified in request by begin and/or
end parameters, the count number of events of a given topic, coming from an origin of a given
name.

Response example

$ curl ’http://localhost:8880/v1/svc/pg0/summary?begin=2021-03-27T00:00:00Z’
[{"origin":"cam1","count":1,"topic":"CounterAggregation"}
,{"origin":"cam2","count":1,"topic":"LineCrossed"}
,{"origin":"cam2","count":2,"topic":"MotionAlarm"}]

The pg0 object reports that it has total 4 events recorded since midnight UTC on March 27th
2021, – with details specified for each event topic and each event origin.

3.15.2 Retreive Viinex 3.0 events from PostgreSQL database

Request purpose

Perform a query on the PostgreSQL table that stores Viinex 3.0 events and return results in
form of JSON array.

Request URL and applicable methods

GET http://server:port/v1/svc/pgN

162

https://viinex.com/

User’s Guide Viinex 3.0

Request parameters

pgN should be the identifier of the posgres object instance.

Optional parameters topic, origin, begin, end, limit and offset may be used to filter
events that need to be retreived by their topic, origin, timestamp, as well as perform pagination
in case if there too many events to be returned in a single query.

Response syntax

Optional query parameters topic and origin should both be a comma-separated lists of
strings representing event topics and event origin names, respectively. If no topic or origin
parameters are specified, it is assumed that no filtering should be done on respective criteria.

Optional query parameters begin and end may specify the temporal window from which the
events should be retreived. If any of these two parameters is omitted, it is assumed that UNIX
epoch should be used as begin or an infinite future should be used as end.

Optional parameter order may take one of two values, asc or desc, and serves for the pur-
pose of specifying how the events should be sorted when being retreived from the database.
The events are always sorted according to their timestamp. The value of order=asc explic-
itly specifies that events should be retreived in timestamp ascending order, while parameter
order=desc specifies that events should be retreived in timestamp descending order. When
parameter order is omitted, the ascending sort order is assumed.

Optional parameters limit and offset allow to perform a pagination when querying for a
large volume of events. The limit parameter specifies the maximum number of events to be
retreived from the database in one single query. The offset parameter specifies how many
events need to be skipped, taking into account other query parameters and the sort order, before
actually retreiving and returning requested events. When no limit parameter is specified, it
is assumed that the number of events to be returned is limited to 1000.

The result of this HTTP request is a JSON array of Viinex 3.0 event objects. Each event
object has mandatory properties timestamp, topic, origin and data. In more detail this
syntax is described in section 3.22.

Remarks

When the origin parameter is specified, this filter is applied only to the origin.name property
of events.

No means are provided to filter events based on their data. Therefore, such filtering should be
performed at client side.

Since the results are returned in a single query, there are no measures taken at the server side
in order to retrieve results from database page-wise, or to deal with cursors, and so on. The
query is being executed as is, and all the results are fetched from the database, formatted into
JSON and sent to the client.

This means that an application should take additional care of the number of events fetched
and returned in a single request. The implicit value of limit is deliberately chosen to be small.
An application may explicitly establish a large limit to retreive a large number of events in
a single query, though this is not recommended. Instead, it is advised that pagination is used
for accessing potentially large set of events. The query returning a large number of events may

163

https://viinex.com/

User’s Guide Viinex 3.0

result in resouce exhaustion and performance degradation or denial of service at Viinex 3.0
server side.

Response example

$ curl -X GET ’http://192.168.0.71:8880/v1/svc/pg0?
origin=cam1,cam2&topic=RtspException,MotionAlarm
&begin=2021-03-17T00:00:00Z&limit=100&offset=700’
[{"origin":{"name":"cam1",

"details":{"Source":"VideoSource_1"},
"type":"onvif"},

"data":{"state":false},"topic":"MotionAlarm","timestamp":"2021-03-17T06:37:10Z"},
{"origin":{"name":"cam1",

"details":{"VideoSourceConfigurationToken":"VideoSourceToken",
"Rule":"MyMotionDetectorRule",
"VideoAnalyticsConfigurationToken":"VideoAnalyticsToken"},

"type":"onvif"},
"data":{"state":false},"topic":"MotionAlarm","timestamp":"2021-03-17T06:37:10Z"},

{"origin":{"name":"cam1","details":{"Source":"VideoSource_1"},"type":"onvif"},
"data":{"state":false},"topic":"MotionAlarm","timestamp":"2021-03-17T06:37:11Z"},

...
{"origin":{"name":"cam1",

"details":{"VideoSourceConfigurationToken":"VideoSourceToken",
"Rule":"MyMotionDetectorRule",
"VideoAnalyticsConfigurationToken":"VideoAnalyticsToken"},

"type":"onvif"},
"data":{"state":true},"topic":"MotionAlarm","timestamp":"2021-03-17T06:42:38Z"}]

]

The query to extract the 7th 100-events-length page, starting from midnight UTC on March
17th 2021, timestamp ascending order) from sources cam1 and cam2 of topics MotionAlarm and
RtspException is executed, and respective events are returned as the result of HTTP request.

3.16 Vehicle license plate recognition

3.16.1 Perform recognition on a given still image

Request purpose

Find and recognize vehicle license plates on an image using recognizer with name alprN; return
the results.

Request URL and applicable methods

POST http://servername:port/v1/svc/alprN

164

https://viinex.com/

User’s Guide Viinex 3.0

Request parameters

Image to be processed must be passed as POST request body without additional containers
(encoding layers). To be processed, an image should be in JPEG format.

Response syntax

JSON array of objects – recognition results. May be empty, if no license plates were found.

[{"plate_text":STRING,
"confidence":FLOAT,
"plate_rect":{"left":FLOAT,"top":FLOAT,

"right":FLOAT,"bottom":FLOAT}},
...

]

where

plate_text – text read from license plate by recognizer;

confidence – an estimation of this results’ likelihood, percents;

plate_rect – an object containing floating-point numbers for left-top corner and bottom-right
corner of rectangle fitting the license plate on the image. The coordinates are given in relative
units (from 0 to 1); to obtain coordinates in pixels, one should multiply the relative values by
image width or height respectively.

Response example

A correct request can be sent using CURL utility (https://curl.haxx.se/download.html):

curl -X POST http://localhost:8880/v1/svc/alpr0
--data-binary @FILENAME.jpg

Response:

[{"plate_text":"BC6841BE",
"confidence":86.78,
"plate_rect":{"left":0.639,"top":0.852,

"right":0.708,"bottom":0.878}}
]

— one license plate was found with text “BC6841BE”; hypothesis confidence is about 87%,
relative license plate coordinates on an image are returned.

3.16.2 Perform recognition on a video source

Request purpose

Find and recognize vehicle license plates on video using alprvideo object with name alprCamN;

165

https://curl.haxx.se/download.html
https://viinex.com/

User’s Guide Viinex 3.0

return the results.

Request URL and applicable methods

GET http://servername:port/v1/svc/alprCamN

Request parameters

none

Response syntax

JSON array of objects – recognition results, or, if no license plates were found, an array of one
element - a JSON object containing single property timestamp.

[{"plate_text":STRING,
"confidence":FLOAT,
"plate_rect":{"left":FLOAT,"top":FLOAT,

"right":FLOAT,"bottom":FLOAT}},
"timestamp": TIMESTAMP

},
...

]

where plate_text, confidence and plate_rect fields have same meaning as in sec. 3.16.1,
and timestamp field contains the timestamp of the video frame where the best or sufficient
hypothesis was obtained. This value can be used in a request to a snapshot (see sec. 3.16.3).
If no recognition results were produced, an answer would look like this:

[{ "timestamp": TIMESTAMP }]

where the timestamp of the frame stored as the snapshot is returned.

Response example

A correct request can be sent using CURL utility (https://curl.haxx.se/download.html):

curl -X GET http://localhost:8880/v1/svc/alprCam1

Response:

[{"plate_text":"BC6841BE",
"confidence":86.78,
"plate_rect":{"left":0.639,"top":0.852,

"right":0.708,"bottom":0.878},
"timestamp": "2017-10-08T21:00:53.231Z"}

]

166

https://curl.haxx.se/download.html
https://viinex.com/

User’s Guide Viinex 3.0

— one license plate was found with text “BC6841BE”; hypothesis confidence is about 87%,
relative license plate coordinates on an image are returned. The timestamp of a frame where
the best (or sufficient) hypothesis was produced is retutned in the timestamp field, which can
be used in a request for corresponding snapshot.

3.16.3 Obtain a snapshot of a recently recognized vehicle

Request purpose

Obtain a snapshot of the vehicle with recognized license plate using alprvideo object with
name alprCamN.

Request URL and applicable methods

GET http://servername:port/v1/svc/alprCamN/snapshot

Request parameters

timestamp – one mandatory parameter, referring to exact timestamp of the frame where the
license plate text was best recognized. The timestamp may be given in ISO 8601 format, or as
an integer number of milliseconds elapsed since UNIX epoch.

Other parameters are optional and correspond to description given in section 3.8.

Response example

A correct request can be sent using CURL utility (https://curl.haxx.se/download.html):

curl -X "GET http://localhost:8880/v1/svc/alprCam1/snapshot?\
timestamp=2017-10-08T21:00:53.231Z&\
roi=(0.639,0.852,0.708,0.878)"

Response – a JPEG image of the license plate recognized in the example of request given in
section 3.16.2.

Remarks

Note that snapshots of recognized vehicles are stored in RAM, and their number is limited by
the snapshots parameter in the configuration of the alprvideo object. Older snapshots are
overwritten by more recent ones as they appear.

Snapshots are stored whenever a request for license plate recognition is issued, no matter
whether some recognition results were produced or not. If no results were produced, the
alprvideo object stores a frame coming right after the time when the request was received
by Viinex 3.0 as the snapshot. The timestamp of that frame is reported in the timestamp
property of respective API response (see section 3.16.2).

167

https://curl.haxx.se/download.html
https://viinex.com/

User’s Guide Viinex 3.0

3.17 Freight container code recognition

3.17.1 Perform recognition on a given still image

Request purpose

Find and recognize a freight container code on an image using recognizer with name cidrN;
return the results.

Request URL and applicable methods

POST http://servername:port/v1/svc/cidrN

Request parameters

Image to be processed must be passed as POST request body without additional containers
(encoding layers). To be processed, an image should be in JPEG format.

Response syntax

JSON array of objects – recognition results. May be empty, if no freight container codes were
found.

[{"plate_text":STRING,
"confidence":FLOAT,
"valid": BOOLEAN,
"plate_rect":{"left":FLOAT,"top":FLOAT,

"right":FLOAT,"bottom":FLOAT}},
...

]

where

plate_text – text of identification code read from freight container by the recognizer;

confidence – an estimation of this results’ likelihood, percents;

valid – indicates whether the checksum digit in the recognition result matches the valid
checksum digit computed over the non-checksum part of the recognition result [25];

plate_rect – an object containing floating-point numbers for left-top corner and bottom-
right corner of rectangle fitting the container code on the image. The coordinates are given in
relative units (from 0 to 1); to obtain coordinates in pixels, one should multiply the relative
values by image width or height respectively.

Response example

A correct request can be sent using CURL utility (https://curl.haxx.se/download.html):

168

https://curl.haxx.se/download.html
https://viinex.com/

User’s Guide Viinex 3.0

$ curl -X POST http://localhost:8880/v1/svc/cidr0 --data-binary @FILENAME.jpg
[

{
"plate_text":"SUDU8796043",
"confidence":93.150246,
"valid": true,
"plate_rect":{"bottom":0.162,"left":0.4293,"right":0.8159,"top":0.1099}

}
]

— one freight container code was found with text “SUDU8796043”, which is, according to [25], a
freight container code with a valid checksum digit; hypothesis confidence is about 93%, relative
container code coordinates on an image are returned.

3.17.2 Perform container code recognition on a video stream

Request purpose

Find and recognize freight container codes on video using cidrvideo object in “trigger” mode
with name cidrCamN; return the results.

Request URL and applicable methods

GET http://servername:port/v1/svc/cidrCamN

Request parameters

none

Response syntax

JSON array of objects – recognition results, or, if no container codes were found, an array of
one element - a JSON object containing single property timestamp.

[{"plate_text":STRING,
"confidence":FLOAT,
"plate_rect":{"left":FLOAT,"top":FLOAT,

"right":FLOAT,"bottom":FLOAT}},
"timestamp": TIMESTAMP

},
...

]

where plate_text, confidence and plate_rect fields have same meaning as in sec. 3.17.1,
and timestamp field contains the timestamp of the video frame where the best or sufficient
hypothesis was obtained. This value can be used in a request to a snapshot (see sec. 3.17.3).
If no recognition results were produced, an answer would look like this:

169

https://viinex.com/

User’s Guide Viinex 3.0

[{ "timestamp": TIMESTAMP }]

where the timestamp of the frame stored as the snapshot is returned.

Response example

A correct request can be sent using CURL utility (https://curl.haxx.se/download.html):

curl -X GET http://localhost:8880/v1/svc/cidrCam1

Response:

[{"plate_text":"SUDU8796043",
"confidence":93.15,
"plate_rect":{"left":0.4293,"top":0.1099,

"right":0.8159,"bottom":0.162},
"timestamp": "2020-12-25T11:00:42.151Z"}

]

— one container code was found with text “SUDU8796043”; hypothesis confidence is about
93%, relative container code coordinates on an image are returned. The timestamp of a frame
where the best (or sufficient) hypothesis was produced is retutned in the timestamp field,
which can be used in a request for corresponding snapshot.

3.17.3 Obtain a snapshot of a recently recognized container code

Request purpose

Obtain a snapshot of the vehicle with recognized container code using alprvideo object with
name cidrCamN.

Request URL and applicable methods

GET http://servername:port/v1/svc/cidrCamN/snapshot

Request parameters

timestamp – one mandatory parameter, referring to exact timestamp of the frame where the
freight container code text was best recognized. The timestamp may be given in ISO 8601
format, or as an integer number of milliseconds elapsed since UNIX epoch.

Other parameters are optional and correspond to description given in section 3.8.

Response example

A correct request can be sent using CURL utility (https://curl.haxx.se/download.html):

170

https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://viinex.com/

User’s Guide Viinex 3.0

curl -X "GET http://localhost:8880/v1/svc/cidrCam1/snapshot?\
timestamp=2020-12-25T11:00:42.151Z&\
roi=(0.4293,0.1099,0.8159,0.162)"

Response – a JPEG image of the container code recognized in the example of request given in
section 3.17.2.

Remarks

Note that snapshots of container codes are stored in RAM, and their number is limited by
the snapshots parameter in the configuration of the cidrvideo object. Older snapshots are
overwritten by more recent ones as they appear.

Snapshots are stored whenever a request for container code recognition is issued, no matter
whether some recognition results were produced or not. If no results were produced, the
cidrvideo object stores a frame coming right after the time when the request was received
by Viinex 3.0 as the snapshot. The timestamp of that frame is reported in the timestamp
property of respective API response (see section 3.17.2).

3.18 Video analytics in “freeflow” mode

The previous sections 3.16.2 and 3.16.3, as well as 3.17.2 and 3.17.3, describe the operation
of vehicle license plate recognition and freight container code recognition modules on video
stream in so called “triggered” mode. This means that it’s user’s application has to trigger
the recognizer each time a license plate or a freight container code needs to be found in video
stream, – and the recognition stops after the result is produced. An opposite to this mode is a
“freeflow” mode, as described in section 2.4.7. The freeflow mode of operation for license plate
recognizer or container code recognizer means that the latter continously tries to process every
incoming video frame from the stream5, and produces the result for every processed frame if
some license plate or a container code is recognized on that frame.

In the “freeflow” mode, there is no need for an API call to trigger the recognition, because the
recognition is turned on permanently. Another difference is that the recognizer does not save
processed frames in the circular buffer in RAM to be available as snapshots. Instead, the usage
of general-purpose Viinex 3.0 video archive is advised to store the incoming video stream. The
archive may be accessed any time later to get the snapshot of a specific video frame, using the
timestamp of the frame.

Of course, in comparison with “triggered” mode, there should be some other mechanism for
obtaining the recogntion resuls in “freeflow” mode. In “triggered” mode, the recognition results
are returned as an HTTP response to the HTTP API call which triggered the recognition. As
in the “freeflow” mode no such API call is provided, the recognition results are sent from the
alprvideo or cidrvideo object in “freeflow” mode as events.

There are at least two ways to capture these events. The first one is to link the alprvideo
or cidrvideo object with the Web server object in Viinex 3.0 configuration. As a result, the
events with recognition results will be available via the WebSocket programming interface, as
described in section 3.22. Note, however, that these are “raw” events coming for every video

5Some video frames may be skipped and left unprocessed. A frame may be discarded without processing if
its processing is not started yet because the recognizer is busy with a previous frame, and during that a newer
video frame arrives. The recognizer does not perform buffering of video data in the freeflow mode.

171

https://viinex.com/

User’s Guide Viinex 3.0

frame where a non-empty recognition result is produced. No aggregation is performed on these
results. There will be an explicit event per every video frame where a vehicle license plate
or a freight container code is recognized. An application would probably need to implement
an additional logic for their aggregation to produce only one result for each actual vehicle or
freight container.

An advised approach, however, would be to not link the alprvideo or cidrvideo object
with Viinex Web server, but rather to have a custom script object for recognition results
aggregation. In this approach, the alprvideo or cidrvideo object should be linked with
its aggregating script, and the latter is linked with the web server. The aggregating script
may accumulate some number of recently recognized results (so that they are available upon a
GET HTTP request to that script, as described in section 3.21.1), and send the events when
a new recognition result is detected, or some recognition result gets updated, or when the
processing for a particular vehicle or freight container is completed. Additionally, one instance
of the aggregating script may be used to handle the raw events coming from more than one
alprvideo or cidrvideo objects, thus providing the means for multi-camera processing for
the same vehicle or freight container. An example for such aggregating script is provided by
Viinex support team upon customer’s request.

3.19 Railcar identification number recognition

The object ridrcons which is build into Viinex 3.0 for controlling the video analytics modules
for railcar identification number recognition and consolidates the result from such analytics,
exposes the interface Updateable described in 3.21.2. The update call for ridrcons object
serves for the purpose of starting and stopping of ID number recognition for a single railcar.

A JSON value passed to the update API call for ridrcons object should have the form of

{
"recognize": BOOLEAN,
"cookie": NUMBER

}

The recognize property is mandatory and defines whether the recognition of an ID number
for the next railcar should start or stop. The cookie value is optional and may be used in
order to distinguish the recognition results.

The video frames obtained by ridrcons object and its underlying video analytics processes
after the update call with recognize property set to true are processed and the results of such
processing are accumulated. When the ridrcons gets the update call with recognize property
set to false, a consolidated recognition result is formed and sent to the event channel exposed
by the ridrcons object. For simplicity, the same recognition result is returned as the result of
respective update call. This may greatly simplify the integration in certain scenarios, because
the recognition result does not need to be caught as an event, but rather can be obtained by
software initiated the recognition in a synchronous manner.

The format of consolidated recognition result has the form of

{
"cookie": INTEGER,
"result": STRING,
"confidence": FLOAT,

172

https://viinex.com/

User’s Guide Viinex 3.0

"valid": BOOLEAN,
"channels":[

{
"video_source": STRING,
"result": STRING,
"confidence": FLOAT,
"timestamps":{

"first": TIMESTAMP,
"last": TIMESTAMP,
"best": TIMESTAMP

},
"rect":[FLOAT,FLOAT,FLOAT,FLOAT]

},
...

]
}

where the property cookie contains the cookie value passed to the ridrcons when recog-
nition was started; result contains the recognition result for railcar identification number;
confidence is a floating-point number specifying how confident is the algorighm on recogni-
tion results (this is a value in some ordinal scale; the bigger is the value, the higher is the
confidence). Boolean value valid indicates whether the checksum digit in the recognition
result matches the valid checksum digit computed over the non-checksum part of the recogni-
tion result. The array channels contains the information on recogntion results for each video
channel: the name of video source in video_source property, the recognition result for this
specific video channel in a result property, the recogntion confidence for this specific video
source, and the timestamps of the first frame, last frame of that railcar, and the timestamp
of the frame when the recognition result was seen by algorithm as “best”. For this best frame,
the rectangle which contains the recognized railcar number, is specified by the property rect.
Note that the best and rect properties may be both null if no result was obtained on a video
source for specific railcar.

An example for railcar number recognition result from the ridrcons object is given below:

{
"cookie":52,
"result":"60556339",
"confidence":0.98,
"valid": true,
"channels":[

{
"video_source":"cam1",
"result":"60556339",
"confidence":0.98,
"timestamps":{

"first":"2020-07-21T15:14:52.822Z",
"last":"2020-07-21T15:14:56.942Z",
"best":"2020-07-21T15:14:53.982Z"

},
"rect":[0.2054,0.4208,0.7054,0.6291]

},
{

"video_source":"cam2",

173

https://viinex.com/

User’s Guide Viinex 3.0

"result":"60556339",
"confidence":0.98,
"timestamps":{

"first":"2020-07-21T15:14:52.823Z",
"last":"2020-07-21T15:14:56.943Z",
"best":"2020-07-21T15:14:53.983Z"

},
"rect":[0.2054,0.4208,0.7054,0.6291]

}
],

}

3.20 Face detection

3.20.1 Perform face detection on a given still image

Request purpose

Find and localize human faces on an image using the face detector instance with name
facedetN; return the results.

Request URL and applicable methods

POST http://servername:port/v1/svc/facedetN

Request parameters

Image to be processed must be passed as POST request body without additional containers
(encoding layers). To be processed, an image should be in JPEG format.

Response syntax

JSON array of objects – face detecton results. May be empty, if no faces were found on the
given image.

[{"confidence":FLOAT,
"face_rect":{"left":FLOAT,"top":FLOAT,

"right":FLOAT,"bottom":FLOAT}},
...

]

where

confidence – an estimation of this results’ likelihood, a number within a range of [0, 1];

face_rect – an object containing floating-point numbers for left-top corner and bottom-right
corner of a bounding box for each detected face. The coordinates are given in relative units

174

https://viinex.com/

User’s Guide Viinex 3.0

(from 0 to 1); to obtain coordinates in pixels, one should multiply the relative values by image
width or height respectively.

Response example

A correct request can be sent using CURL utility (https://curl.haxx.se/download.html):

curl -X POST http://localhost:8880/v1/svc/facedet0
--data-binary @FILENAME.jpg

Response:

[{"confidence":0.9997726,
"face_rect":{"left":0.33510125,"top":0.11539618,

"right":0.5989618,"bottom":0.7536577}}]
]

— one face was found on the input image with the likelyhood about 99.97%; relative face
bounding box’ coordinates on an image are returned.

3.20.2 Perform face detection on a video sequence

Request purpose

Find and localize human faces on a video sequence using the facedetvideo object with name
faceDetCamN; return the results.

Request URL and applicable methods

GET http://servername:port/v1/svc/faceDetCamN

Request parameters

none

Response syntax

JSON array of objects – face detection results, or, if no license plates were found, an array of
one element - a JSON object containing the single property timestamp.

[{"confidence":FLOAT,
"face_rect":{"left":FLOAT,"top":FLOAT,

"right":FLOAT,"bottom":FLOAT}},
"timestamp": TIMESTAMP

},
...

]

175

https://curl.haxx.se/download.html
https://viinex.com/

User’s Guide Viinex 3.0

The confidence and face_rect fields have same meaning as in sec. 3.20.1, and the timestamp
field contains the timestamp of the video frame where the best or sufficient confidence was
obtained for the detection results. This value can be used in a request to a snapshot (see
sec. 3.20.3). If no recognition results were produced, an answer would look like this:

[{ "timestamp": TIMESTAMP }]

where the timestamp of the frame stored as the snapshot is returned.

Response example

A correct request can be sent using CURL utility (https://curl.haxx.se/download.html):

curl -X GET http://localhost:8880/v1/svc/faceDetCam1

Response:

[{"confidence":0.9997726,
"face_rect":{"left":0.33510125,"top":0.11539618,

"right":0.5989618,"bottom":0.7536577},
"timestamp": "2017-10-08T21:00:53.231Z"}

]

— one face was found on the input image with the likelyhood about 99.97%; relative face
bounding box’ coordinates on an image are returned. The timestamp of a frame where the
best (or sufficient) confidence was produced with face detection results is retutned in the
timestamp field, which can be used in a request for the corresponding snapshot.

3.20.3 Obtain a snapshot of a recently detected face

Request purpose

Obtain a snapshot of the face using facedetvideo object with name faceDetCamN.

Request URL and applicable methods

GET http://servername:port/v1/svc/faceDetCamN/snapshot

Request parameters

timestamp – one mandatory parameter, referring to exact timestamp of the frame where the
face was detected with the best confidence. The timestamp may be given in ISO 8601 format,
or as an integer number of milliseconds elapsed since UNIX epoch.

Other parameters are optional and correspond to description given in section 3.8.

176

https://curl.haxx.se/download.html
https://viinex.com/

User’s Guide Viinex 3.0

Response example

A correct request can be sent using CURL utility (https://curl.haxx.se/download.html):

curl -X "GET http://localhost:8880/v1/svc/faceDetCam1/snapshot?\
timestamp=2017-10-08T21:00:53.231Z&\
roi=(0.335,0.115,0.599,0.754)"

Response – a JPEG image of the license plate recognized in the example of request given in
section 3.20.2.

Remarks

Note that snapshots of recognized vehicles are stored in RAM, and their number is limited by
the snapshots parameter in the configuration of the facedetvideo object. Older snapshots
are overwritten by more recent ones as they appear.

Snapshots are stored whenever a request for face detection is issued, no matter whether some
detection results were produced or not. If no results were produced, the facedetvideo object
stores a frame coming right after the time when the request was received by Viinex 3.0 as the
snapshot. The timestamp of that frame is reported in the timestamp property of respective
API response (see section 3.20.2).

3.21 Abstract interfaces

This section describes two simple API calls – read and update – which are not bound to a
specific object implementation, but are used in some simple cases by Viinex 3.0 built-in objects,
and, most notably, by scripts. Each script represents a state machine and can publish a part
(a view) of its state to be read by external software, and it can also accept the synchronous
requests via HTTP which can be interpreted as requests for state change (update) and possibly
for some other actions available from the scripting engine.

3.21.1 Stateful

Request purpose

Obtain the state of an object

Request URL and applicable methods

GET http://SERVER:PORT/v1/svc/objectN

Request parameters

none

177

https://curl.haxx.se/download.html
https://viinex.com/

User’s Guide Viinex 3.0

Response syntax

The above call gives a read access to the state information of an object, which might be
published by that object. The syntax of response body of this HTTP call is always JSON,
however the exact form of the response depends on the object implementation.

In particular, the script object provides the Stateful interface implementation in Viinex 3.0.
Each script defines which data should be published as its “state” – it does so in the source code
of the script, by means of a call to the function vnx.publish().

Note that once the script publishes its “state”, this HTTP request call can be served to as many
clients as needed, in parallel, – an application does not need to worry about the performance
of this request, because the published state is copied and stored by Viinex 3.0 as immutable
data, till the next JavaScript call to vnx.publish().

3.21.2 Updateable

Request purpose

Update the state of an object, and possibly perform other actions (achieve required side effects).

Request URL and applicable methods

POST http://SERVER:PORT/v1/svc/objectN

Request parameters

none

Response syntax

The request body for this call is always JSON, but the form of JSON data that needs to be
passed as request body is defined by each object implementation individually. In particular,
the scripts would typically receive this update as a call to the function onupdate(). The JSON
data received as the HTTP body of this request is passed as an argument to that JavaScript
call. It is up to the implementation which JSON data structure is considered valid.

The response to this call is also always a JSON, but its semantics depends on the implemen-
tation. For scripts, the return value from the onupdate() function is sent as the HTTP body
in response to this request.

Note that, particularly for the scripts, which are essentially single-threaded, since the script
state machine update requires executing some part of script code, – the HTTP calls to the
Updateable interface of an object are serialized. In other words, if there are concurrent clients’
HTTP update calls to the same Updateable object (for example, an instance of a script) –
these concurrent calls will be processed sequentially, one after another. This differs from how
the HTTP requests for reading out the state are processed (see section 3.21.1).

178

https://viinex.com/

User’s Guide Viinex 3.0

3.22 WebSocket interface

In order to acquire real-time events from Viinex 3.0, the latter implements additional application-
level interface on top of WebSocket protocol.

In order to use the WebSocket interface implemented by Viinex 3.0, a client application should
establish the WebSocket connection to that server. That connection should be established to
the URL http://SERVER:PORT/ in order to work with the objects created in static configu-
ration of Viinex 3.0 instance and published by the webserver listening on the port number
PORT. Otherwise, in order to work with the objects created dynamically in a cluster with
name CLUSTER_NAME, the client should make a WebSocket connection to the endpoint
http://SERVER:PORT/v1/cluster/CLUSTER_NAME .

The application interface implemented by Viinex 3.0 is straightforward. The client application
can issue commands to alter its state, and can receive events from Viinex 3.0 server. The
interchange is performed in form of WebSocket data frames of type text, see [15]. The syntax
of the text data sent by Viinex 3.0 server and expected by such server from client is JSON
values, with semantics described below. The interchange completely asynchronous: the server
never sends anything as a “response” to client’s request.

The client’s WebSocket requests recognized by Viinex 3.0 server should have the form of JSON
array, whose first element should be a string defining an action, and the rest elements are
interpreted as the arguments for corresponding action:

["ACTION", PARAM_1, ...]

There is also an exception from this rule – an empty array, [], which can be sent by client
as a heartbeat. It is recommended that Viinex 3.0 client sends the heartbeat message to the
server every 20 seconds. If Viinex 3.0 cannot recognize client’s request acquired via WebSocket
protocol, it closes the connection to that client.

Valid client’s requests are: disconnect, authenticate, and subscribe.

The disconnect request instructs the server to gracefully close the connection. It foes not
require additional arguments.

The authenticate request is required if Viinex 3.0 web server is configured to require authen-
tication. With this request, the client should pass the value of auth cookie set by Viinex 3.0
web server in the reponse to authentication request, as described in section 3.2.2. This should
be a string containing a base64-encoded JSON structure (the authentication response). As
an alternative, the client may set the argument of authenticate WebSocket request to the
authentication response itself, also returned by Viinex 3.0 server as the body of HTTP request
described in 3.2.2. So, the authenticate request could look like

["authenticate", "eyJzYWx0IjoiMzQxNDcwMzE5ZjVlZDRhODIxM2UzMjdh\
MWUyNTJiODJlYzhhZmFmZGM4MWYzMzQxNTNjZmE5YzU5YmFlMmNhMSIsImlzc3\
VlZCI6IjIwMTctMDEtMTZUMTI6NTg6MzkuNzcyODI0NFoiLCJzaWduIjoiYWMz\
MmZkYTc1NDViZDlhNGExMTQ5YzRjOWVjOTkzNWEiLCJ1c2VyIjoxfQ=="]

or, an equivalent form,

["authenticate", {
"salt":"341470319f5ed4a8213e327a1e252b82ec8afafdc81f334153cfa9c59bae2ca1",

179

https://viinex.com/

User’s Guide Viinex 3.0

"issued":"2017-01-16T12:58:39.7728244Z",
"sign":"ac32fda7545bd9a4a1149c4c9ec9935a",
"user":1}]

If the server requires authentication, this request should be issued first after the client con-
nects via WebSocket protocol. If Viinex 3.0 server cannot validate authentication cookie, it
terminates the connection.

The subscribe request is used by the client to establish or change its subscription to events
from Viinex 3.0 server. This request may be accompanied with an optional argument defining
the server-side filter for events. If omitted, it is assumed that all events are transmitted to the
client.

The filter of a subscription is defined by JSON object with two optional values, origins and
topics. The origins value may be set to a JSON array holding the list of Viinex 3.0 object
names (identifiers), sourcing the events to be received by the client. If this value is absent, it
is assumed that the client should receive events from all origins. The topics value may be set
to a JSON array holding the list of event topics in which the client is interested. The topics of
events match that described in section 2.1.9. If this parameter is absent, it is assumed that the
client is interested in events of all topics. Here are some examples for the subscribe requests:

["subscribe", {}]

— receive all events from all objects;

["subscribe", {"origins": ["cam1","cam2"]}]

— receive all events originating from Viinex 3.0 objects with names "cam1" and "cam2" (which
could be ONVIF cameras or raw video sources);

["subscribe", {"origins": ["cam1"],
"topics": ["MotionAlarm", "GlobalSceneChange"]}]

— receive the events from motion detector and global scene change detector working for object
"cam1".

In order to begin receiving some events, it is necessary that client issues the subscribe com-
mand after it is connected (and authenticated, if required). Initially, the new client is not
subscribed to anything, and will not receive any events without explicit action.

Note that not only the client’s subscription matters on what objects’ events are sent to the
client, but also the server configuration, in particular — which objects are linked to the instance
of the web server. The events from a camera are only sent to the client via the WebSocket
connection only if that connection is established to Viinex 3.0 web server instance which is
linked with that camera, as described in section 2.5 of this document.

After the subscription is established, the server starts to transmit the events from linked event
sources to the WebSocket client. Each event is transmitted in a separate WebSocket frame of
type text, holding the JSON record of the following form:

{
"timestamp": TIMESTAMP,
"origin": {

180

https://viinex.com/

User’s Guide Viinex 3.0

"name": STRING,
"type": STRING,
...

},
"topic": STRING,
"data": OBJECT

}

The timestamp contains the time when the event was produced. The origin value is an
object containing the string property name identifying the Viinex 3.0 object which produced
that event; there is also the string value type, defining the type of event’s origin, and can be
some more optional values depending on origin’s type (for instance, in case of ONVIF events,
the device may report the identifier of a specific video detector or rule which has triggered the
alert). The topic property contains a string type of event’s topic, as specified in section 2.1.9
of this document. Finally, the data is a JSON object whose form depends on event topic, but
for simple binary-state detectors it has the form of

{ "state": BOOLEAN }

indicating whether the alert generated by specific detector is active or not.

Additionally, the server may send an empty JSON object, {}, as a heartbeat, if there were no
events matching the client’s subscription within the last 30 seconds. The client may use this
as an indication of connection health.

An example of sequence of events that may be received by a client is given below:

{"timestamp":"2017-11-13T13:38:54.9068374Z",
"origin":{"name":"raw0","type":"localvideo"},
"data":{"state":true},"topic":"MotionAlarm"}

{"timestamp":"2017-11-13T13:38:56.1068374Z",
"origin":{"name":"raw0","type":"localvideo"},
"data":{"state":true},"topic":"MotionAlarm"}

{"timestamp":"2017-11-13T13:38:56.5068374Z",
"origin":{"name":"raw0","type":"localvideo"},
"data":{"state":false},"topic":"MotionAlarm"}

{}
{}

It is possible to acquire similar dump by means of a simple WebSocket client, for instance
like the one available for Google Chrome browser: https://chrome.google.com/webstore/
detail/simple-websocket-client/pfdhoblngboilpfeibdedpjgfnlcodoo

3.23 Configuration clusters

Configuration clusters are the way to create and dispose groups of Viinex 3.0 objects possibly
linked to each other and working together, but isolated from the objects created in other clusters
and/or main (static) configuration of Viinex 3.0 instance. That is, each cluster resemble an
instance of Viinex 3.0 with some custom static configuration, with the difference that it can be
created and destroyed in the runtime, without restarting the instance of Viinex 3.0. However,

181

https://chrome.google.com/webstore/detail/simple-websocket-client/pfdhoblngboilpfeibdedpjgfnlcodoo
https://chrome.google.com/webstore/detail/simple-websocket-client/pfdhoblngboilpfeibdedpjgfnlcodoo
https://viinex.com/

User’s Guide Viinex 3.0

the configuration of objects created within a cluster cannot be changed, once the cluster is
created. The only way to change that configuration is to stop (destroy) the cluster and create
it anew with an altered configuration.

The reason for such isolation of objects belonging to different clusters and the immutability of
objects’ configuration is that this simplifies the configuration semantics: there is a guarantee
that objects created within the same cluster (or static main configuration) are always available
to each other, always functioning, so that the links between such objects, if described in the
configuration, are valid as long as objects are running.

The configuration clusters are transient, they do not survive the restart of Viinex 3.0 instance
and thus should be re-created explicitly every time such restart is done.

3.23.1 Enumerate existing clusters

Request purpose

Obtain the names of dynamic configuration clusters created so far

Request URL and applicable methods

GET http://servername:port/v1/cluster

Request parameters

none

Response syntax

JSON array of strings:

[NAME_1, NAME_2, ...]

each string representing a cluster. There is always one special name "main" contained in that
list, which represents the main configuration (statically set via configuration files).

Response example

["main", "cluster1", "cluster3"]

3.23.2 Create a new cluster of objects

Request purpose

Obtain the names of dynamic configuration clusters created so far

182

https://viinex.com/

User’s Guide Viinex 3.0

Request URL and applicable methods

PUT http://servername:port/v1/cluster/NAME

Request parameters

NAME – the name (identifier) for the cluster to be created. HTTP request body should contain
the configuration for newly created cluster

Response syntax

The body of this HTTP request should contain the configuration for the newly created cluster.
This is a JSON document with syntax and semantics described in the first chapter of this
manual. Note that the configuration should come in one single JSON document, containing all
necessary objects and links at once. Split configuration cannot be processed when creating
the cluster via HTTP API.

Response example

$ curl -X PUT http://localhost:8880/v1/cluster/ClusterOne \
--data-binary @ClusterOne-config.json

– dynamically creates the cluster with name ClusterOne, taking the configuration for objects
and links within that cluster from the local file ClusterOne-config.json. The objects and
links described in that configuration file are created and started. A simple example of such
configuration is given in section 2.1.20.

3.23.3 Remove an existing cluster of objects

Request purpose

Remove an existing cluster of objects, stopping and destroying all objects in that cluster and
links between them.

Request URL and applicable methods

DELETE http://servername:port/v1/cluster/NAME

Request parameters

NAME – the name (identifier) for the cluster to be removed.

183

https://viinex.com/

User’s Guide Viinex 3.0

Response example

$ curl -X DELETE http://localhost:8880/v1/cluster/ClusterOne

– dynamically stops all the objects previously clreated in cluster with name ClusterOne,
destroys all links between that objects and removes the cluster itself. A new cluster with the
same name can be created after that.

3.23.4 Enumerate components published by a cluster

Request purpose

Obtain the list of components published by a cluster, along with their interface types.

Request URL and applicable methods

GET http://servername:port /v1/cluster/CLUSTER_NAME

Request parameters

none

Remarks

The semantics and output syntax for this request matches that for the request 3.1.1 which
can be used for enumerating the components published under a specific webserver in a static
configuration. The difference is that this requests provides information for the objects published
in a specified dynamically created cluster.

3.23.5 Obtain the metainformation on components published by a
cluster

Request purpose

Obtain the metainformation previously stored in the configuration sections for objects created
and published within the specified cluster and published under this instance of web server.

Request URL and applicable methods

GET http://servername:port/v1/cluster/CLUSTER_NAME/meta

184

https://viinex.com/

User’s Guide Viinex 3.0

Request parameters

none

Remarks

The semantics and output syntax for this request matches that for the request 3.1.2 which
can be used for enumerating the components published under a specific webserver in a static
configuration. The difference is that this requests provides information for the objects published
in a specified dynamically created cluster.

3.23.6 Access Viinex 3.0 objects in configuration clusters

Request purpose

Forward the HTTP calls to a specific objects to that objects within a specified cluster.

Request URL and applicable methods

METHOD http://servername:port/v1/cluster/CLUSTER_NAME/OBJECT_NAME/PATH?QUERY

Request parameters

CLUSTER_NAME – the identifier of a cluster, OBJECT_NAME – the identifier of an object.
PATH and QUERY could be an object-specific and request-specific parameters. There can also
be request-specific paramters in the HTTP request body.

Response syntax

Any HTTP call having the URL path prefix of /v1/cluster/, and then a cluster identifier,
followed by a slash an object identifier, with optional URL path suffix, query parameters and
HTTP request body, are processed as if the object with respective identifier exited in the
static (main) configuration, and the request was performed to /v1/svc/ URL prefix, instead
of /v1/cluster/CLUSTER_NAME/.

If the cluster with specified name does not exist, or an object with specified name does not
exist in that cluster, an error with code 404 is returned.

Response example

$ curl http://localhost:8880/v1/cluster/ClusterOne/cam1/stream.m3u8

receives the HLS playlist for live stream of video source cam1 created in the configuration
cluster ClusterOne.

185

https://viinex.com/

User’s Guide Viinex 3.0

Remarks

In order for objects declared in the cluster’s configuration to be published under the webserver
declared in the static configuration of Viinex 3.0, such objects should be linked with an object
of type publish which should be declared in their cluster. For more information refer to
section 2.1.20.

3.23.7 Obtaining events from a cluster

In order to receive the events from the objects published by a specified cluster with name CLUS-
TER_NAME, a client should establish a WebSocket connection to the endpoint http://SER-
VER:PORT/v1/cluster/CLUSTER_NAME . Further interaction with the Viinex 3.0 WebSocket
server is performed as described in section 3.22. The events from the objects created in a
specific cluster are segregated from the events produced by other clusters and/or the static
configuration, so no client receives events from different clusters in a single WebSocket connec-
tion.

186

https://viinex.com/

User’s Guide Viinex 3.0

4 Scripting and JS API

Viinex 3.0 implements scripting by means of introducing an object of type script, every
instance of which represens an independent JavaScript execution context. Section 2.1.15 ex-
plained how required source code in JavaScript is loaded into such context (that is – by means
of specifying parameters load and/or inline in the configuration). In this chapter, the execu-
tion model for the script in Viinex 3.0 is considered; the role of onload, ontimeout, onupdate
and onevent handlers is explained1. In the section 4.2 the general JS API exposed by Vi-
inex 3.0 is documented. Section 4.3 goes into the detail of JS API provided by Viinex 3.0
objects that can be controlled from scripts.

4.1 Execution model and handlers

Like it was mentioned in section 2.1.15, scripts serve for the following purposes in Viinex 3.0:

• maintain internal state according to a custom logic, and expose a part of that state via
HTTP API (see section 3.21.1);

• accept requests to update the internal state and reply to such requests to the parties who
initiate them (see section 3.21.2);

• receive and process events from other objects; generate and send new events;

• query and control other objects like video recording controller, PTZ device, video ren-
derer, stream switch, and so on, – by means of calling respective JavaScript methods for
such objects (see section 4.3).

The update requests, as well as the events, targeted by two of those four purposes, are both
initiated by an external party (a client who issued a HTTP request or an object which has
generated an event). They can be triggered at any moment, independently of which stage of
execution the script is in. On the other hand, JavaScript execution context is single threaded
(at least in ECMAScript 5.1 [23], and there is no way in ECMAScript to preemptively interrupt
a current execution of arbitrary code in order to execute some other portion of code in the
same context, and the return the control to the original code.

This means that in order to handle requests or events initiated by external parties, and to do
that timely, the script needs to be idle most of the time. This is because the idle state is the
only state when the script is ready to process a new request or event.

The model of execution of scripts in Viinex 3.0 does not resemble the typical program in
C, which does not return control until its completion. Rather the script is an event-driven
program, having a limited number of entry points which periodically trigger the execution of a
portion of code in the script, – but the latter tries to do its job as fast as possible, and return
the control – that is, get back to an idle state. Then some other external party initiates some

1For the purpose of this chapter the feature of overriding handlers’ names is ignored: throughout this chapter
the default names will be used.

187

https://viinex.com/

User’s Guide Viinex 3.0

action, triggering the execution of the script again. Good thing is that the execution context
between the moments when the script execution is triggered over and over, is preserved for the
same instance of script. This means that the script may “remember” its history of execution,
if it wants to.

In Viinex 3.0 there are four entry points which are used to trigger the execution of a script.
These entry points are called handlers, and their default names are: onload, ontimeout,
onupdate and onevent. Their signatures syntax semantics is explained in the following sub-
sections. It is important that none of these handlers should not retain execution control for a
long time. Instead, each handler should do its job as fast as possible, and return. The script
will gain control again when the next event or HTTP update request occurs, and if the script
knows it needs to gain soon unconditionally – it can schedule for itself a timer.

4.1.1 onload

The onload handler is called exactly once, when the script execution context is ready for
normal operation – that is, all source code of the script is loaded, and all Viinex 3.0-specific
objects and API is injected into the JS execution context.

onload should be a function of one argument. The argument that it receives is the value of
init parameter of this script instance in Viinex 3.0 configuration.

4.1.2 ontimeout

The JS API provides the means for the script to schedule a timer, in order be sure that the
control will be gained by the script again within certain amount of time, – regardless of whether
events or update requests are received. The JS API function which schedules such timeout is
called vnx.timeout, see paragraph 4.2.2 for details.

The ontimeout function is called when the timer previously scheduled by the script rings. This
handler has no arguments.

4.1.3 onevent

The onevent handler is called when the instance of script object receivs an event from other
object that it is linked with in Viinex 3.0 configuration.

onevent should be a function with one argument, which receives the JS object (structure)
containing the event itself. Event objects that are passed as arguments of the onevent handler
have the following form:

{
"timestamp": TIMESTAMP,
"origin": {

"name": STRING,
"type": STRING,
...

},
"topic": STRING,
"data": OBJECT

}

188

https://viinex.com/

User’s Guide Viinex 3.0

– just like an external JSON representation of an event sent via WebSocket interface, see
section 3.22.

4.1.4 onupdate

The onupdate handler is called when a request for “update” is received via the HTTP API.
For more information on the client side representation of that API see section 3.21.2.

An argument to the onupdate function is the data sent by an HTTP client as update request
body (in JSON format). HTTP server parses the stringified JSON syntax, converts it into
internal representation, and passes as an argument to the onupdate function.

Among all other handlers, onupdate is the only one for which its return value is important.
This value is serialized into JSON format and passed back to the HTTP client as a response
to his initial update request.

4.1.5 Example

To sum up the information on handlers in Viinex 3.0 scripts, an annotated example of handlers
test implementation is given below. The script shown as an example counts the number of
events it has received. It also periodically sends an event of its own. For that, it schedules
the timer for itself, and uses the timeout handler to update its state and send an event. The
script also accepts the update requests via HTTP to set the new value of timeout interval for
its periodic events.

// file test-script.js
var config;

var state;

function onload(conf){
if(conf && conf.interval)

config = conf;
else

config = { interval: 5 }; // default interval is 5 seconds

state = {
events: 0,
motion: 0,
timeouts: 0

}

// initially publish our state for HTTP GET calls
vnx.publish(state);

vnx.timeout(config.interval); // schedule an initial timeout
}

function ontimeout(){
state.timeouts = state.timeouts + 1; // update state
vnx.publish(state); // publish our renewed state

189

https://viinex.com/

User’s Guide Viinex 3.0

// send a test event
vnx.event("TestTopic", { timeouts: state.timeouts });

// schedule the next timeout
vnx.timeout(config.interval);

}

function onevent(e){
state.events = state.events + 1;

// also separately count motion alarm events
if(e.topic == "MotionAlarm" && e.data.state)

state.motion = state.motion + 1;

vnx.publish(state); // publish our renewed state
}

function onupdate(d){
if(d && d.interval){

// update the interval
config.interval = d.interval;
// reschedule the next timer
vnx.timeout(config.interval);

}

// return some information to the HTTP client
return {

hello: "world",
state: state,
config: config

};
}

Consider this script is deployed with the following configuration (note the script section and
the init property in it, and how it is used in the onload handler in the script):

{
"objects":
[

{
"type": "onvif",
"name": "cam1",
"host": "192.168.0.121",
"auth": ["admin","12345"]

},
{

"type": "webserver",
"name": "web0",
"port": 8880,
"staticpath": "share/web"

},

190

https://viinex.com/

User’s Guide Viinex 3.0

{
"type": "script",
"name": "script1",
"load": ["test-script.js"],
"init": {

"interval": 5
}

}
],
"links":
[

["cam1", "web0", "script1"]
]

}

This script can be tested using the CURL utility:

$ curl -X GET http://localhost:8880/v1/svc/script1
{"events":41,"timeouts":5,"motion":9}

$ curl -X POST http://localhost:8880/v1/svc/script1 --data ’{"interval":1}’
{"state":{"events":86,"timeouts":8,"motion":23},"hello":"world",
"config":{"interval":1}}

$ curl -X GET http://localhost:8880/v1/svc/script1
{"events":101,"timeouts":17,"motion":23}

As can be seen, the counters increase over time. Update requests are accepted (and some
custom response is returned for every such request), and the script’s state change can be
initiated by that requests too.

Also note that there is no handler for querying (reading) the script state. The script calls a
special function vnx.publish() in order to publish its state, which can be later obtained by
clients using HTTP GET request to that script. Once the state is published in this way, –
Viinex 3.0 automatically serves HTTP requests to get this state, and that does not require
attention from JavaScript code.

4.1.6 Asynchronous operations and anonymous callbacks

Additionally, for some APIs, including the HTTP client described in ??, the operations are
implemented asynchronously, which means that a script may be idle while the operation is
being processed by Viinex 3.0, – and then, upon completion, the result of the operation is
returned to the script in form of an (asynchronous) call to the callback provided by the script.
This does not mean that the execution of a script is interrupted, – quite the opposite, the script
must be in idle state in order to be able to handle such callback. However, the callback is called
when the operation is completed, and the script cannot control the asynchronous operation
after it is started.

In Viinex 3.0, the functions which are implemented as asynchronous operations, always accept
callbacks with the following signature:

function (result, error){

191

https://viinex.com/

User’s Guide Viinex 3.0

...
}

It is always the case that only one of the arguments is defined. If the operation has failed, the
error argument is present, no matter what type of result is expected (there can be no result,
– the error description is anyway passed to the callback in a second argument). Therefore it is
advised that the callback checks whether its second argument is defined, and handles this case
as failure of the operation. The error argument is an object containing the boolean property
error set to true and description of the error in a string property message.

If no error has occured during the operation processing, the second argument passed to the
callback is null or undefined, while the first argument holds the result of the operation. It
depends on the operation and can be null as well in some cases.

The following example illustrates how the timeout can be scheduled in Viinex 3.0 scripts using
anonymous callback:

vnx.timer.delay(5.0, function(r,e){
if(e){

vnx.error("Operation failed: ", e.message);
} else {

vnx.log("Timer triggered successfully");
});

4.2 General puropose functions

In order to communicate with Viinex 3.0 and other objects running in it, the JavaScript exe-
cution context is populated with a few specific functions and variables. They all are injected
into “namespace” (top-level stateless JavaScript object) vnx. Most of these functions were pre-
viously disclosed in section 4.1.5, namely – vnx.publish(), vnx.timeout() and vnx.event()
were used in the source code of the example. This section explains that Viinex 3.0-specific
functions in detail.

4.2.1 vnx.publish()

The function vnx.publish() serves to publish the “public view” of the state of the script. This
public view is available by HTTP clients issuing the GET requests to the script, as described
in section 3.21.1.

An argument to this function should be a JSON value representing a public view of the state of
the script. Upon clients’ request this JSON value is stringified and served as HTTP response
body. This happens automatically, concurrently, without the actual participation of the script.

4.2.2 vnx.timeout()

vnx.timeout() is the function to schedule a timer for a script in order for the handler
ontimeout to be called in specified amount of time. This is effectively the way for the script
to gain control in specified time interval unconditionally, regardless of the presence of other
triggers – events and/or update requests.

192

https://viinex.com/

User’s Guide Viinex 3.0

This function accepts one argument which should be an number of seconds (possibly fractional).
The semantics of the timer in scripts is very simple: after a script calls vnx.timeout(K)
and yields the control, the handler ontimeout of this script will be called K seconds later,
exactly once. If a script needs the timer to be called again, – it should issue a new call to
vnx.timeout().

Also note that there is only one timer for each script, and each subsequent call to vnx.timeout()
cancels the previous one.

There is also a way to cancel the timer (which might or might not be set previously), by calling
vnx.timeout() with no arguments.

Note that there is also an alternative way to schedule a delay in Viinex 3.0 builtin scripts, the
one which uses anonymous callbacks. It is described in the next section 4.2.3.

4.2.3 vnx.timer.delay()

While the vnx.timeout() function and the ontimeout handler operate the single global timer
available in the script, – there is another object named vnx.timer which is a factory for creating
multiple timers and delays. There is one method available in that object, delay(t,cb), which
allows one to create a new delay. The first argument to this function is the value of timeout,
in seconds, and can be a fractional number. The second argument to the vnx.timer.delay()
is a callback function. This callback is called upon delay completion. The signature of the
callback is described in section 4.1.6. There should be two argument in a callback function,
where first one represents the asynchronous call result (in case of success), and the second one
represents the error information (in case of failure). For the delay() asynchronous call, there
is no async result, and the error is unlikely to happen, therefore a delay callback can actually
ignore its arguments.

Note that the asynchronous delays created by vnx.timer.delay() do not affect each other
and the global timeout()/ontimeout() pair. Correspondingly, their respective callbacks are
triggered independently of each other and of the designated ontimeout() callback. A script
may create as many concurrent asynchronous delays as needed.

The next fragment of code shows how periodical timers can be implemented using the mecha-
nism of delays with anonymous callbacks:

function setDelay(x,d){
vnx.timer.delay(d, function(r,e){

vnx.log(x+"triggered, delay was ",d);
setDelay(x,d);

});
}

function onload(config){
setDelay("A:",5);
setDelay("B:",2);

}

The output of such script would be as follows (excerpt from the Viinex 3.0 log):

...
[script.scr0/INFO] B:triggered, delay was 2

193

https://viinex.com/

User’s Guide Viinex 3.0

[script.scr0/INFO] B:triggered, delay was 2
[script.scr0/INFO] A:triggered, delay was 5
[script.scr0/INFO] B:triggered, delay was 2
[script.scr0/INFO] B:triggered, delay was 2
[script.scr0/INFO] A:triggered, delay was 5
...

As it can be seen, the concurrent delays are executed in parallel, not affecting each other.

4.2.4 vnx.event()

If a script is linked in Viinex 3.0 configuration with other objects that implement the event
consumer contract (these are, for example, objects of type webserver, process, etc.), it can
generate and send events to such objects. For that, the function vnx.event() is used.

This function expects two arguments. The first argument is mandatory, it should be of string
type, and should contain the topic of an event to be sent. Topic can be an arbitrary string,
but usually it is usually a short ASCII string with no whitespaces, resembling an identifier in
C-like languages. There are predefined event topics in Viinex 3.0 enumerated in section 2.1.9;
generally they originate from ONVIF specifications. Applications are free to use this predefined
event topics or introduce their own. The purpose of event topic is that it can be used by some
event consumers to filter out irrelevant events. In particular, WebSocket interface provides
the means for the client to subscribe for events of particular list of topics only. For more
information on such subscription see section 3.22.

The second arument to the function vnx.event() is optional and may represent so called
“event data”. The format of event data depends on event topic. For instance, the events of
topic MotionAlarm and DigitalInput have the event data of the form { "state": BOOLEAN
} – in this way they carry one boolean flag which describes the state of the motion detector or
a digital input pin. An application is free to introduce its own forms for event data.

Note that the representation of an event in Viinex 3.0 includes, besides event topic and event
data, also information on when an event was produced (the field timestamp), and an informa-
tion on event origin – the field origin which typically includes the object type where an event
originates from, its name, and sometimes more: for instance, for digital input events there is
also a number (an address, or an index) of a pin whose state has changed.

To avoid confusion, Viinex 3.0 does not allow for scripts to fabricate these fields of an event2.
When vnx.event() is called by the script, the event topic and data is set by the caller, however
the timestamp of a newly generated event and its origin is set automatically by Viinex 3.0. In
case of script, if vnx.event(TOPIC, DATA) is called, the resulting event would have the form
of

{
"timestamp": TIMESTAMP,
"origin": {

"type": "Script",
"name": STRING

},
"topic": TOPIC,

2The same policy is true for the process object described in section 2.1.16: an external process can specify
the topic and the data of an event, but not the timestamp and origin.

194

https://viinex.com/

User’s Guide Viinex 3.0

"data": DATA
}

where timestamp receives the value of current time according to the computer’s clock, in UTC
timezone, and origin.name receives the name (identifier) of this script instance in Viinex 3.0
configuration.

4.2.5 Logging

The development and debugging of scripts in embedded environments is sometimes tough, and
Viinex 3.0 is no exclusion. There is no symbolic debugger for scripts, no breakpoints, variables
cannot be watched at different stages of script execution, and so on. In order to ease the
debugging and diagnostics of scripts, Viinex 3.0 provides the means for logging. There is a
family of functions, vnx.log(), vnx.debug(), vnx.error() and vnx.warning(), which allow
the script to write a log records of different severity levels (INFO, DEBUG, ERROR and WARNING
respectively). The records produced by said functions are directed into current Viinex 3.0 log
destination (a syslog, or a log file, or a standard error stream), and the --log-level policy
applied to them.

All of that functions accept up to five arguments (this limitation contrasts with console.log()
function and friends in modern browsers).

4.2.6 require() and modules

Viinex 3.0 implements a basic support for JS modules for builtin scripting system. For that,
the function require() is defined which can be used to load JS modules residing at predefined
search paths, which is by default

Program Files\Viinex\share\js,
Program Files\Viinex\share\js\modules

on Windows, and

/usr/share/viinex/js,
/usr/share/viinex/js/modules

on Linux. On Windows, the actual search path depends on where Viinex 3.0 is installed.
The modules should be organized as ECMAScript 5 modules, e.g. each module should be
represented by a single JS file, and that file should contain the code which eventually sets
the module.exports variable to a single function or to an JS object, – whatever is expected
by clients of that module. Some examples for modules for builtin scripts are shipped with
Viinex 3.0 distribution.

One important example and application for Viinex 3.0 modules is the module named vnx--
script-instance. It allows one to put the whole implementation of a custom script into an-
other module, and load it, afterwards lifting the onload, onupdate, onupdate and ontimeout
handlers which can possibly be defined in that implementation module, – to the root naming
context (scope) of the script. This makes it possible to create the script instances in Viinex 3.0
configuration which do not rely on the presence of JS source code in particular path defined
in the configuration file, mentioning the source code files in the load property of the script, –
but rather the code can be loaded by configuring the script like that:

195

https://viinex.com/

User’s Guide Viinex 3.0

{
"type": "script",
...
"inline": "require(’vnx-script-instance’)(’script-impl.js’);",
...

}

where script-impl.js is a substitute for an actual script implementation module name.

4.2.7 Linked objects

Probably the most important feature of scripts is that they can control other Viinex 3.0 objects.
Which objects, in particular, the script is allowed to control, – depends on which objects are
linked with this instance of script object in configuration.

From the point of view of the script, however, it is still a challenge to know what objects should
be controlled by that script, what are their names and types, because the script does not have
direct access to Viinex 3.0 configuration. There is a part of configuration which is available to
the script, namely, an init property of the script object configuration section. One could use
this section to inform the script on which objects it is linked with and should control. However
the same information is also specified in the links section of the configuration, so placing it
also into script’s init configuration property would be redundant and error-prone.

Viinex 3.0 provides a script with the means to discover which objects that script can access,
and what interfaces do that objects implement. Namely, there is a variable exposed under the
name vnx.objects. That variable is a JavaScript associative array (dictionary). The string
keys to that array are the names (identifiers) of Viinex 3.0 objects, which are linked with this
instance of script object, and which have types (or implement interfaces) controllable from
JavaScript code3.

The values contained in vnx.objects dictionary represent the objects linked with the script.
Every of that representations is a JavaScript object, which contains:

• all interfaces implemented by corresponding Viinex 3.0 object;

• all methods implemented by all interfaces of corresponding Viinex 3.0 object.

This needs to be explained in more detail. Like with HTTP API, in JS API the case is
that one Viinex 3.0 object may implement more than one functional interface. In order to
distinguish between functional interfaces, and to let the script know explicitly whether an object
implements a given specific interface, – the interfaces in Viinex 3.0 JS API are represented as
JS objects, each containing all methods that this interface provides, having the predefined
name specific to that interface, and – injected under that predefined name as a property of an
object which implements that interface.

For example, assume there is an video renderer with the name "rend1", linked with the
script. Such script would then have an access to the variable vnx.objects, which is a dic-
tionary, and that dictionary would contain the value with key "rend1". Furthermore, the
value vnx.objects["rend1"], which is equivalent to vnx.objects.rend1, would be itself an

3Some interfaces, like event source or event consumer, do not require specific methods on their implemen-
tation objects to be called from JavaScript code. Such objects, even if they are linked with the script in
configuration, are not exposed to the script through the vnx.objects dictionary.

196

https://viinex.com/

User’s Guide Viinex 3.0

object, which can be checked for whether it implements an interface LayoutControl, using the
following test:

if(vnx.objects["rend1"].LayoutControl){
var layctl = vnx.objects.rend1.LayoutControl;
// perform actions with layctl

}

The JS object vnx.objects.rend1.LayoutControl is an implementation of interface Layout-
Control provided by Viinex 3.0 object rend1. This JS object contains methods for controlling
the layout of the video renderer, – methods specific for the layout control, for instance the
method layout(). The particular methods specific to each interface are described in sec-
tion 4.3. At this point it is important that said methods can be called using the notation
like

vnx.objects["rend1"].LayoutControl.layout(....);

For simplicity, all methods provided by all JS interfaces of an object, are also injected into
this object, directly. This means that in the above example the method layout can also be
accessed like this:

vnx.objects["rend1"].layout(....);

– note the omitted reference to the LayoutControl. This might create a point of confusion
if there is a name clash between methods implemented in different interfaces, in case if some
object is unlucky enough to implement such interfaces at the same time, – but this situation
seems unlikely or rare, and it is still resolvable by referencing the particular interface of an
object when a method with shadowed name from that interface needs to be used.

The syntax for using the resulting objects contained in the vnx.objects dictionary thus should
look natural to the developers who is familiar with languages like C++, C# or Java. The re-
sulting object has all methods of all implemented interfaces available directly in it (just like with
multiple inheritance in C++ or multiple interfaces implemented by a class in C# or Java); there
exists a way to test whether an object implements a specific interface (“obj.InterfaceName !=
null” as a substitute for syntax “obj is InterfaceName” in C# or “dynamic_cast<Inter-
faceName*>(obj) != nullptr” in C++, or “obj instanceof InterfaceName” in Java), and
there is also a way to cast an object to a specific interface, possibly getting null if the interface
is not implemented (that is – simply “obj.InterfaceName” as a substitute for syntax “obj as
InterfaceName” in C# or “dynamic_cast<InterfaceName*>(obj)” in C++).

4.2.8 Configuration clusters

If the script has its configuration property clusters set to true, it receives an access to
functionality for managing Viinex 3.0 configuration clusters, identical to HTTP API described
in section 3.23.

In particular, an object named clusters gets exposed in the vnx namespace of script’s JS
execution context, and that object is populated with three methods: enumerate, shutdown
and start.

• vnx.clusters.enumerate() takes no arguments and returns an array of string names
of clusters currently being run in the Viinex 3.0 instance.

197

https://viinex.com/

User’s Guide Viinex 3.0

• vnx.clusters.shutdown(name) serves for the purpose of stopping a configuration clus-
ter. It takes one parameter – a string representing the name of a running configuration
cluster. The function returns null upon success.

• vnx.clusters.start(name, config) initiates the creation of a configuration cluster.
It takes two arguments, – the first one should be a string value for the name of the new
cluster, and the second one should be a JS object representing the configuration of that
new cluster. This function returns null upon success.

Note that the config parameter to the vnx.clusters.start() call should be a valid config-
uration for the Viinex 3.0 cluster, – an object including the objects and links sections, with
references to the auxiliary object publish, and so on. And example for a cluster configuration
is given in section 2.1.20.

4.2.9 Local filesystem

A script has a limited set of functionality to access the local filesystem (local to the host
or a virtual environment where Viinex 3.0 instance is running). The corresponding API is
exposed in the vnx.fs object and consists of the following functions: unlinkSync, existsSync,
renameSync, readFileSync, writeFileSync.

The names of these functions mimick the names of their related counterparts in the API
implemented by the popular Node.js platform, however the number and semantics of these
functions’ arguments may differ from Node.js implementation. Namely,

• unlinkSync(name) serves to remove a local file. It accepts one string argument – a path
to the file to be removed. The function returns null upon success.

• existsSync(name) checks whether a file on a local filesystem exists. The function accepts
one string argument – a path to the file which existence needs to be checked. The
function returns a boolean value. Note that unlike Node.js this function does not work
on directories (i.e. it checks for existence of a file).

• renameSync(oldName, newName) moves or renames a file on a local filesystem. This
function accepts two string arguments, the path to an existing file and the new name
or path. The function returns null upon success. This function does not work on
directories.

• readFileSync(name) reads out the entire content of a local file which resides in path
name, and returns it as a string value. Note that unlike the Node.js implementation, this
function does not accept the encoding parameter; the encoding of the file being read is
assumed to be UTF-8 in Viinex 3.0 built-in scripts.

• writeFileSync(name, data) writes the string represented by second function parameter
data into a file which resides in path name. If parameter name contains a path prefix
and specified directories do not exist, – they will be created by the writeFileSync
call. Note that unlike the Node.js implementation, this function does not accept the
mode parameter; the destination file is always overwritten (data is never appended to an
existing file, and an existing file is never preserved), and the encoding to write out the
data always defaults to UTF-8.

If you find some important part of the API for filesystem management is lacking to build the
logic required by your application, please contact Viinex team so that we could add the missing
functionality for you.

198

https://viinex.com/

User’s Guide Viinex 3.0

4.2.10 HTTP client

A basic HTTP client is available to Viinex 3.0 builtin scripts. The main purpose for providing
HTTP client functionality within Viinex 3.0 builtin scripts is to give users more flexibility in
how Viinex 3.0 communicates with other systems. For instance, a script may issue an HTTP
request when some event happens in order to notify a third party system on that event. HTTP
calls from scripts can also be used to control other systems, even including remote Viinex 3.0
instances. The functionality provided by this client is by no means comprehensive and cannot
compete with HTTP client implementations like, for instance, the one available for Node.js.
However it should be sufficient for simple communication with many HTTP APIs and servers
provided by a wide range of third party software.

To access the functionality of HTTP client built into Viinex 3.0 scripts, an object vnx.http
object is provided. This object has three functions exposed:

• get(req, cb) – the method to issue an HTTP GET request,

• post(req, cb) – the method to issue an HTTP POST request, and

• request(req, cb) – the versatile function to issue a request with any HTTP method.

As the matter of fact the first two methods are just a paricular case of the third one; for this
reason the method request will be considered here in detail, and the differences for get and
post functions are mentioned later in this section.

The method vnx.http.request() accepts two arguments, of which the first one describes
the HTTP request which should be made, while the second one represents an (anonymous)
callback to receive the result of HTTP request.

The first argument, – request description, – should be a JS object containing the following
fields:

req = {
url: STRING,
method: "get" | "post" | "put" | "delete",
headers: [[STRING, STRING]],
body: null | OBJECT | STRING,
expect: "raw" | "json" | "response"

}

Of all these fields only the url is mandatory and does not have a default value. The url
should, obviously, specify a destination of the HTTP request.

The field method may specify one of 4 most typical HTTP methods, encoded as a lowercase
string, – the name of that method. If not specified, the "get" value is assumed for the method
property.

The field headers may specify additional HTTP headers to be passed along with the request.
Those headers may specify authentication, set cookies, and so on. The headers are encoded as
array of pairs of strings, where each pair is, in its turn, encoded as an array of 2 elements. If
omitted, no additional headers are transmitted with the HTTP request.

The optional body property may hold the body of HTTP request that should be passed to the
server. This property may either be null, or it can be a string, – in that case the value of the

199

https://viinex.com/

User’s Guide Viinex 3.0

string is transmitted as is, in UTF-8 encoding, – or it can be a JS object, – and in that case
that object is passed to the HTTP server in JSON format. If omitted, the body value of null
is assumed, which means that no content is transmitted to the server in the request body.

The expect property specifies how the HTTP resonse should be decoded by Viinex 3.0 before
the provided callback is called. The possible values for expect field are "raw", "json" and
"response". The value "raw" means that HTTP response body is returned as a string. The
value "json" means that HTTP response body is decoded as JSON and returned as a JS
object. The value "response" means that the low-level information on HTTP reponse is
returned to the callback, – together with reponse code, headers, and the body in a raw form.
This is described below in more detail. If omitted, the "raw" value is assumed for the expect
property, so the response body is returned as a string.

Note that there is a difference in HTTP client behavior depending on which response format
is chosen for the callback. In case of "raw" and "json" formats, the callback does not have
an information on what kind of error a server has returned, – so only the HTTP responses
with code 200 are handled as successful in that case. All other HTTP response codes (except
redirects, which are handled by the HTTP client automatically) are treated as an error.

This effectively means that if some kind of authentication scheme needs to be implemented,
– the script should either provide all credentials with every request as HTTP headers, or it
should specify the expect property as "response", and analyze the HTTP response codes to
send the credentials in case of respective errors (403).

In contrast, if the value of expect is set to response, – the HTTP client only treats as an
error when the failure occured at the transport level (i.e. the HTTP request could not be
completed/the result was not received). If this is not the case, – then the HTTP response with
any response code is passed to the script as successful result. The script needs to analyze the
response by its own.

The first argument to the request() as well as get() and post() calls may hold just a string
value instead of an object with request description. In this case this string is interpreted as an
URL where the HTTP request should be made to. Rest of request parameters are assumed to
be default.

Now, the second argument to the vnx.http.request() method should be a callback function.
As any other callback function in Viinex 3.0 builtin scripts, it should accept two arguments,
of which first represents an HTTP response result, in case of success, while the second on
repsresents an error. More information on anonymous callbacks is available in section 4.1.6.

As already mentioned, depending on the value of the expect property of request description
given to the vnx.http.request() call, the response argument may hold different types of
values. That is either a sting or a decoded JSON object, or, if the req.expect property was
set to "response", this would be a JS object in the form of

response = {
code: NUMBER,
message: STRING,
headers: [[STRING, STRING]],
body: STRING

}

This object represents the HTTP response. The fields code and message represent an HTTP
response code returned by the server, and the accompanying string message. The headers
property hold the HTTP response headers, encoded as an array of pairs of strings (where

200

https://viinex.com/

User’s Guide Viinex 3.0

each pair is encoded as an array of exactly 2 elements). The property body holds the HTTP
response body sent by the server.

Note that in all cases, the HTTP client reads out the response in full, before the callback is
called.

The functions vnx.http.get() and vnx.http.post() only differ from the function vnx.ht-
tp.request() in that they use the respective HTTP method (GET or POST) when making
a request.

Below some basic examples are given for the usage of the HTTP client in Viinex 3.0 builtin
scripts.

function onload(config){
vnx.http.get("https://google.com/", function(r,e){

if(e){
vnx.error("An error occured: ", e.message);

}
else{

vnx.log("Got a response, length=", r.length);
}

});
}

The above script could give the following output in Viinex 3.0 log:

[script.scr0/INFO] Got a response, length=15503

Another example involving more complex request description:

function onload(config){
var rq = {

url: "http://demo.viinex.com/v1/svc",
expect: "json"

};
vnx.http.get(rq, function(r,e){

if(e){
vnx.error("An error occured: ", e.message);

}
else{

vnx.log("Got a response: ", JSON.stringify(r));
}

});
}

The above script could give the following output in Viinex 3.0 log (somewhat shortened):

[script.scr0/INFO] Got a response: [["WebRTC","webrtc0"],["VideoStorage",...

The same, expecting a detailed HTTP response instead of decoded JSON value as the result
to the callback:

201

https://viinex.com/

User’s Guide Viinex 3.0

function onload(config){
var rq = {

url: "http://demo.viinex.com/v1/svc",
expect: "response"

};
vnx.http.get(rq, function(r,e){

if(e){
vnx.error("An error occured: ", e.message);

}
else{

vnx.log("Got a response: ", JSON.stringify(r));
}

});
}

where the script output looks as follows (shortened and aligned):

[script.scr0/INFO] Got a response:
{"body":"[[\"WebRTC\",\"webrtc0\"],...,[\"SnapshotSource\",\"camPenguins\"]]",
"headers":[["transfer-encoding","chunked"],

["date","Mon,11 Jan 2021 11:02:21 GMT"],
["server","Viinex"],
["content-type","application/json; charset=utf-8"]],

"code":200,
"message":"OK"}

4.3 Application interfaces

The API available to the JavaScript code is not as comprehensive as the one provided via
HTTP. One reason for this is that certain functionality which is available via HTTP API, like
obtaining a video stream, – is simply irrelevant to the use cases of JS API: there is nothing
can be done with a video stream in Viinex 3.0 embedded scripts. Other reason is that the
feature of scripting is relatively recent in Viinex 3.0 (it has first appeared in December 2018),
and is still evolving, catching up with its HTTP counterpart. Some application interfaces may
be totally unsupported in JS API, from others there may be some methods missing. If you
think certain functionality needs to be supported in JS API in the first place, – please contact
Viinex 3.0 team.

The following application interfaces are available for the scripts: RecControl (for the record-
ing controller), LayoutControl (for the video renderer), StreamSwitchControl (for stream
switch application), PtzControl (for ONVIF devices with PTZ functionality enabled), and
SnapshotSource (implemented by live video sources, video archives and video analytics mod-
ules).

4.3.1 RecControl

Interface RecControl allows the script to control the recording of a video stream into a video
archive which is performed by recording controller, see section 2.1.8. Corresponding part of
HTTP API is described in section 3.6.

202

https://viinex.com/

User’s Guide Viinex 3.0

The RecControl interface has three methods, status(), record() and flush(). Method
status() accepts no arguments and returns a boolean value signalling whether video recording
is being performed. Method record() accepts one argument of boolean type which indicates
whether the video recording should be started or stopped. Method flush(), just like its
counterpart in HTTP API, forces the video archive linked with the instance of recording
controller to complete the “current” video fragment, actually write all the data to the disk,
along with the valid MP4 container headers, and immediately make that data available for
reading via video archive API.

For example, the following code can be used to implement the video recording using recording
controller recctl0 whenever a motion detector is triggered, except business hours (say, 8AM–
6PM):

function onevent(e){
// process motion detector events only
if(e.topic != "MotionAlert")

return;

// find out whether it’s business hours
var hour = e.timestamp.getHours();
var isBusinessHours = (hour >= 8) && (hour < 18);

// and whether it’s an active or deactivated alarm
var isAlarm = e.data.state;

if(isBusinessHours)
// on working hours, turn recording off
vnx.objects.recctl0.record(false);

else
// otherwise turn recording on or off
// if it’s an active or deactivated alarm respectively
vnx.objects.recctl0.record(isAlarm);

}

4.3.2 PtzControl

The PtzControl application interface serves for controlling of the PTZ-enabled ONVIF com-
patible device from scripts in Viinex 3.0.

PtzControl has four methods implemented: gotoPreset, gotoHome, getPosition and moveAb-
solute. This is somewhat limited functionality in comparison with that implemented in cor-
responding interface in Viinex 3.0 HTTP API which is described in section 3.13, however it is
still sufficient for solving a number of applied problems.

The gotoPreset and gotoHome methods are very similar and serve for the purpose of moving
the PTZ device into a predefined position. Method gotoPreset accepts one string argument
which should be a name or label of a preset that the camera should be positioned to. Method
gotoHome does not accept arguments and sends the camera to its “home” position.

The getPosition method allows its calling script to obtain the values of current camera’s pan,
tilt and zoom coordinates. This method does not accept arguments. The result is returned
as a tuple of three floating-point numbers which should be interpreted as (pan, tilt, zoom), in
that order. Note that the range of returned values is up to the device; with ONVIF devices it

203

https://viinex.com/

User’s Guide Viinex 3.0

is often [−1, 1] for pan, [0, 1] or [−1, 1] for tilt, and [0, 1] for zoom, but these ranges may vary
across devices and vendors. Please refer to [12] and section 3.13 of this document for more
information on ranges for PTZ coordinates.

The moveAbsolute allows the calling script to move the PTZ device into a position with
specified absolute coordinates. This method should be called with three arguments, which
are expected to be floating point numbers interpreted as the value for pan, tilt and zoom
coordinates, in that order. The ranges in which the values should fall are the same as the ranges
for values returned by getPosition method call. For reference, these ranges can be obtained
with the help of “Get PTZ node description” HTTP API call described in section 3.13.1.

4.3.3 LayoutControl

JavaScript interface LayoutControl is intended for controlling the layout of a video renderer
from scripts in Viinex 3.0. This interface implements two methods, sources() and layout(),
which mimick the behaviour of their counterparts in HTTP API of the layout contol interface,
which is described in section 3.11. Method sources() does not accept arguments and returns
a sorted list of string identifiers of live video sources linked to corrsponding instance of video
renderer, just like the corresponding HTTP method described in section 3.11.1 does. The array
of strings returned by this call should be used by the script to determine which index has a
video source in this array, to use that index in layout definition.

The method layout() is used to set the layout of viewports displayed by the video renderer.
It is a counterpart of HTTP API method for setting the layout for viewports displayed in a
video renderer which is described in section 3.11.2. This method accepts one argument, which
should be a JS object having the form described in section 2.4.8.

The example of using this interface in production can be found at https://github.com/gzh/
viinex20-rlwswitchcfg/blob/master/v20_etc_conf.d/rlwswitch.js, see function upda-
teRenderers() in that script.

4.3.4 StreamSwitchControl

The purpose of JavaScript interface StreamSwitchControl is to control the stream switch
object described in section 2.1.6. This interface exposes two methods, sources() and input().
Corresponding part of HTTP API is described in section 3.12.

Method sources() accepts no arguments and has the sematnics equivalent to that of synon-
umous method for the LayoutControl interface: it returns a sorted list of string identifiers of
live video sources linked to corrsponding instance of the stream switch object. The returned
list should be used by the script to determine which index has a given video source in this list,
to use that index in order to switch output video stream to a specified input video stream.

The input() method accepts one argument, – an integer number which is interpreted as
the index of an element in array returned by method sources(). Method input() makes the
instance of streamswitch object to switch its output stream so that after the call it completed,
the video stream from specified input source is passed through the streamswitch. This works
exacly the same way as the HTTP call described in section 3.12.2 does.

The example of using this interface in production can be found at https://github.com/gzh/
viinex20-rlwswitchcfg/blob/master/v20_etc_conf.d/rlwswitch.js, see function upda-
teVcams() in that script.

204

https://github.com/gzh/viinex20-rlwswitchcfg/blob/master/v20_etc_conf.d/rlwswitch.js
https://github.com/gzh/viinex20-rlwswitchcfg/blob/master/v20_etc_conf.d/rlwswitch.js
https://github.com/gzh/viinex20-rlwswitchcfg/blob/master/v20_etc_conf.d/rlwswitch.js
https://github.com/gzh/viinex20-rlwswitchcfg/blob/master/v20_etc_conf.d/rlwswitch.js
https://viinex.com/

User’s Guide Viinex 3.0

4.3.5 Stateful

The Statefule interface exposed via JavaScript is the counterpart of respective HTTP in-
terface described in section 3.21.2. The purpose of this interface is an abstraction for some
object which can provide some information on its publicly readable state. The interface has
one method read() and accepts no arguments. The implementation may return the requested
information as a result from the Stateful.read() call.

4.3.6 Updateable

The Updateable interface is exposed via JavaScript by the same Viinex 3.0 objects which
implement the Updateable HTTP interface described in section 3.21.2. The purpose of this
interface is an abstraction for some object which can accept commands for state modification.
The interface has one method update() and accepts one JS value as its argument. The
implementation may return a result from the update() method, that result is accessible by
the calling script.

An example for using the Updateable interface can be found in example configuration for
railcar identification number recognition system. In particular, that configuration contains
the controlling script which uses the Updateable inteface implemented by object ridrcons in
order to start and stop railcar number recognition, and to obtain the recognition results when
the recognition for a single railcar is stopped.

4.3.7 SnapshotSource

JavaScript interface SnapshotSource is indended for storing the snapshots from an object
that provides the SnapshotSource interface, on a local filesystem. It exposes one method,
saveFile(destination, source, options). This method takes up to three arguments, of
which the first – destination – is mandatory and should be a string path to a file on the
local filesystem. This file will be created and will get the content of requested image in JPEG
format. Note that it is required that the folder where the file should be created exists prior to
the call to saveFile() method.

The second argument to this method may represent a temporal requirement for the snapshot.
It can be either a string containing a timestamp of requested image, or an integer number
indicating an index of the requested image in the image cache of snapshot source. For detailed
discussion on temporal requirements in snapshot requests see section 3.8.

The third argument is optional and accepts a JavaScript dictionary which may contain any or
both of the following properties: roi, in order to specify the region on the target image that
needs to be saved as the snapshot, and scale, in order to specify the coefficient for spatial
scaling when the image is saved.

Both of these parameter follow the semantics of respective parameters related to spatial re-
quirements in snapshot requests described in section 3.8. The roi property, if given, should
be an array of 4 elements representing the tuple of (left, top, right, bottom) coordinates of the
rectangle that needs to be cropped from an original image. The coordinates are expected to be
floating-point numbers within the range [0, 1] each, – that is, relative coordinates normalized
by image width (for left and right coordinates) and height (for top and bottom coordinates).

The scale field of the third argument, if given, may be either a single number, which is
interpreted as the coefficient on which the size of the original image, in pixels, is multiplied in

205

https://viinex.com/

User’s Guide Viinex 3.0

order to obtain the result, or it can be a tuple of two numbers encoded as JS array, which is then
interpreted as the target image size, in pixels, – so the image is cropped (if roi is specified), and
after that it is downscaled or upscaled to fit to the size specified in “scale:[width,height]”
parameter. Note that, as specified in section 3.8, the width and height are treated here as
desireable values, however the actual size of resulting snapshot is chosen so that the aspect
ratio of original image is preserved, and so that this resulting image with preserved aspect ratio
fits the rectangle of a given size [width, height]. If the aspect ratio of the original image
mismatches the aspect ratio equal to width:height, – then only one of dimensions of the
bounding box would constitutes an “active” limitation, while the other would be redundant.
One may also choose to fit just the width or just the height of a resulting image; this is achieved
by specifying the scale:[width,0] or scale:[0,height] respectively. Then the snapshot is
scaled so that the resulting image has specified width (or height), and the original aspect ratio
is preserved. The same logic is applied when requesting the snaphot using HTTP API.

To give an example of using this functionality, below is presented an annotated script and
configuration file for performing the face detection on a video stream from IP camera, and
saving the images of detected faces into a specified folder.

// file: save-detected-faces.js

// default configuration -- target folder
// and how much the cropped face image should be extended
var config = {

target_folder: ".",
crop_extend_percents: 40

}

var status = {
saved: 0

}

function onload(cfg){
if(cfg)

config = cfg;
return status;

}

function onevent(e){
// facial detector sends events with topic "FaceDetection".
if(e.origin.type != "localvideo" && e.topic != "FaceDetection")

return;

// the facial detector in Viinex implements the snapshot source interface
var src = e.origin.name;

if(!vnx.objects[src])
return;

var snapshotSource = vnx.objects[src].SnapshotSource;

// at least it should, bail out otherwise.
if(!snapshotSource)

return;

206

https://viinex.com/

User’s Guide Viinex 3.0

// construct the path and the file name the snapshot should be saved to
var ts = e.timestamp.toString().replace(/[:]/g,’-’);
var target = config.target_folder + "\\" + src + "_" + ts + ".jpg";

var rect = e.data.face_rect;

// compute the extended rectangle to be cropped
if(config.crop_extend_percents){

var w = rect.right - rect.left;
var h = rect.bottom - rect.top;

var dw = w * config.crop_extend_percents / 200.0;
var dh = h * config.crop_extend_percents / 200.0;

rect.left -= dw;
rect.top -= dw;
rect.right += dw;
rect.bottom += 2*dw;

rect.left = Math.max(rect.left, 0);
rect.top = Math.max(rect.top, 0);
rect.right = Math.min(rect.right, 1);
rect.bottom = Math.min(rect.bottom, 1);

}
// actually save the snapshot into a file
var res=snapshotSource.saveFile(target, e.timestamp,

{roi:[rect.left, rect.top,
rect.right, rect.bottom]});

if(res){
status.saved += 1;
vnx.publish(status);

}
else vnx.warning("Saving failed");

}

This script can be deployed to work with the following configuration file for Viinex 3.0 (note
the init property of the savescript section of configuration):

{
"objects":
[

{
"type": "webserver",
"name": "web0",
"staticpath": "../web/dist",
"port": 8880

},
{

"type": "onvif",
"name": "cam1",
"host": "192.168.0.121",
"auth": ["admin","12345"]

207

https://viinex.com/

User’s Guide Viinex 3.0

},
{

"type": "facedet",
"name": "facedet0",
"mode": "any",
"workers": 1,
"datapath": "share/facedet"

},
{

"type": "facedetvideo",
"name": "facedetvideo0",
"freeflow": true,
"preprocess": 0,
"postprocess": 0,
"skip": "while_busy",
"snapshots": 10

},
{

"type": "script",
"name": "savescript",
"load": ["etc/conf.d/save-detected-faces.js"],
"init": {

"target_folder": "c:\\temp\\dumpfaces",
"crop_extend_percents": 50

}
}

],
"links":
[

[["facedet0","facedetvideo0","cam1"],"web0"],
[["facedet0","cam1"],"facedetvideo0"],
["facedetvideo0", "savescript"]

]
}

208

https://viinex.com/

User’s Guide Viinex 3.0

5 Native API

Viinex 3.0 exposes a limited API for the low-level integration with its video subsystem. That
API is contained in vnxvideo library which is published by Viinex Inc. under MIT license and
is available at https://github.com/viinex/vnxvideo. The vnxvideo library is a part of Vi-
inex 3.0. The API of this library is mostly contained in files named include/vnxvideo/vnxvideo.h
and include/vnxvideo/vnxvideoimpl.h.

The purpose of the vnxvideo library is a) to provide Viinex 3.0 with access to certain low-level
functionality related with video processing, and b) to provide other developers with abilities
to extend Viinex 3.0 so suite the needs of their applications.

5.1 Brief C and C++ API overview

The C API of vnxvideo library resides in the vnxvideo.h file. A brief excerpt from that file
is given below:

typedef struct { void* ptr; } vnxvideo_videosource_t;
typedef struct { void* ptr; } vnxvideo_raw_sample_t;

typedef int(*vnxvideo_on_frame_format_t)(void* usrptr, EColorspace csp,
int width, int height);

typedef int(*vnxvideo_on_raw_sample_t)(void* usrptr,
vnxvideo_raw_sample_t buffer,
uint64_t timestamp);

int vnxvideo_init(vnxvideo_log_t log_handler, void* usrptr, ELogLevel max_level);

int vnxvideo_local_client_create(const char* name, vnxvideo_videosource_t* out);

int vnxvideo_video_source_subscribe(vnxvideo_videosource_t source,
vnxvideo_on_frame_format_t handle_format, void* usrptr_format,
vnxvideo_on_raw_sample_t handle_sample, void* usrptr_data);

int vnxvideo_video_source_start(vnxvideo_videosource_t);
int vnxvideo_video_source_stop(vnxvideo_videosource_t);
void vnxvideo_video_source_free(vnxvideo_videosource_t);

int vnxvideo_raw_sample_get_format(vnxvideo_raw_sample_t,
EColorspace *csp, int *width, int *height);

int vnxvideo_raw_sample_get_data(vnxvideo_raw_sample_t,
int* strides, uint8_t **planes);

This API is actually is wrapper over the C++ interface. This approach is required to use the
vnxvideo library via the FFI mechanism in languages with managed memory and garbage

209

https://github.com/viinex/vnxvideo
https://viinex.com/

User’s Guide Viinex 3.0

collection. The C++ interface of vnxvideo library resides in the vnxvideoimpl.h file. Some
excepts from that header are given below:

namespace VnxVideo
{

class IBuffer {
public:

virtual ~IBuffer() {}
virtual void GetData(uint8_t* &data, int& size) = 0;
virtual IBuffer* Dup() = 0;
// make a shallow copy, ie share the same underlying raw buffer

};

class IRawSample: public IBuffer {
public:

virtual void GetFormat(EColorspace &csp, int &width, int &height) = 0;
virtual void GetData(int* strides, uint8_t** planes) = 0;
virtual IRawSample* Dup() = 0;
// make a shallow copy, ie share the same underlying raw buffer

};
typedef std::shared_ptr<IRawSample> PRawSample;

typedef typename std::function<void(EColorspace csp,
int width, int height)> TOnFormatCallback;

typedef typename std::function<void(IRawSample*,
uint64_t)> TOnFrameCallback;

typedef typename std::function<void(IBuffer*, uint64_t)> TOnBufferCallback;
typedef typename std::function<void(const std::string& json,

uint64_t)> TOnJsonCallback;

class IVideoSource {
public:

virtual ~IVideoSource() {}
virtual void Subscribe(TOnFormatCallback onFormat,

TOnFrameCallback onFrame) = 0;
virtual void Run() = 0;
virtual void Stop() = 0;

};
typedef std::shared_ptr<IVideoSource> PVideoSource;
class IRawProc {
public:

virtual ~IRawProc() {}
virtual void SetFormat(EColorspace csp, int width, int height) = 0;
virtual void Process(IRawSample* sample, uint64_t timestamp) = 0;
virtual void Flush() = 0;

};
typedef std::shared_ptr<IRawProc> PRawProc;

class IH264VideoSource {
public:

virtual ~IH264VideoSource() {}
virtual void Subscribe(TOnBufferCallback onBuffer) = 0;

210

https://viinex.com/

User’s Guide Viinex 3.0

virtual void Run() = 0;
virtual void Stop() = 0;
virtual void Subscribe(TOnJsonCallback onJson) {}

};
// created by factory functions exposed from plugins

VNXVIDEO_DECLSPEC IVideoSource *CreateLocalVideoClient(const char* name);
VNXVIDEO_DECLSPEC IRawProc *CreateLocalVideoProvider(const char* name);

}

The above excerpt introduces interface classes for NAL unit buffer, for a raw video sample, for
video source producer (IVideoSource and IH264VideoSource) and consumer (IRawProc).

There is also a number of auxiliary functions for managing video samples, deep copying them,
creating shallow references, cropping, resizing, and so on. For more information please refer to
the header file vnxvideo.h. If you need further help with that API, please refer to vnxvideo
source code or contact Viinex 3.0 support team.

In some cases the C API would be sufficient, like the use of “local transport” mechanism in
order to acquire raw video from Viinex 3.0 in some external process. In other cases, like H264
video source plugins implementation, it would be necessary to use C++ API. Depending on
the context, various application problems are discussed below with the use of either one or
another API.

5.2 Acquiring raw video by means of local transport

The local transport mechanism is a combination if shared memory (memory mapped files) and
local IPC streams (named pipes on Windows or UNIX domain sockets on Linux) providing
two parties, – local video provider and local video client, – with the ability to interchange
raw video frames without the need to copy them. The implementation of that mechanism is
open and is contained in vnxvideo project. It can always be used as a reference. Below, the
particular use of the local transport mechanism is discussed to solve the problem of acquiring a
raw video stream in an external process. The latter can be an arbitrary process running on the
same host where the instance of Viinex 3.0 runs; for example this can be an external process
object managed by Viinex 3.0 as described in section 2.1.16, but not necessarily: it can also
be a standalone process like the vnxview program which serves to display a video stream on a
screen; its source code is available at https://github.com/viinex/vnxvideo/tree/master/
vnxview. Another example of use of a local transport is Viinex Virtual Camera1.

The most important function for local transport clients is vnxvideo_local_client_create.
This function creates a so-called local input video transport channel to receive raw video stream
from a specified raw video source object with identifier name in Viinex 3.0 running on a local
computer. The underlying methods for acquiring raw video from Viinex 3.0 process are shared
memory (memory mapped files) and named pipes or UNIX domain sockets. In the calling
process this function creates the respective IPC objects and returns an opaque pointer to the

1Viinex Virtual Camera is a DirectShow component installed with Viinex 3.0 on Windows platform. This
component implements the COM interface of a video source and is thus visible to other software as a locally
attached webcamera. When an instance of Viinex Virtual Camera is created and used by a desktop application
like Skype, Zoom, Chrome, Firefox, etc., – the implementation connects to a renderer object with a fixed name
rend0 which should be configured on the local Viinex 3.0 instance. The video stream rendered by rend0 object
is then sent to each client connected to the virtual camera.

211

https://github.com/viinex/vnxvideo/tree/master/vnxview
https://github.com/viinex/vnxvideo/tree/master/vnxview
https://viinex.com/

User’s Guide Viinex 3.0

object that implements the vnxvideo_videosource_t interface, – respective pointer represents
the local input video transport channel.

Like already mentioned, the latter allows the client code to subscribe for obtaining raw video
frames and for the events of frame format change. This is done by means of the call to
function vnxvideo_video_source_subscribe, which takes two callback functions that need
to implemented by the client (see below).

The video source can be started and stopped. It is required to be started in order for the client
code to receive the video data. Starting and stopping of a video source is performed with func-
tions vnxvideo_video_source_start and vnxvideo_video_source_stop respectively. The
video source should also be freed (disposed) when it is no longer needed, in order to prevent
resource leak in the client’s process. Such disposal is performed by means of a call to the
function vnxvideo_video_source_free.

The raw video frames are passed to the client code by means of calling the callback functions
provided by client into vnxvideo_video_source_subscribe call. These two callback func-
tions should be implemented by client. Their types are vnxvideo_on_frame_format_t and
vnxvideo_on_raw_sample_t. The latter receives the pointer vnxvideo_raw_sample_t for ev-
ery video frame. This pointer allows the client code to get access to the actual uncompressed
video data – for that purpose the function vnxvideo_raw_sample_get_data should be called.
The out parameters of that function are 3 element arrays of integers (for video planes’ strides)
and pointers (for video planes’ data).

The callback function vnxvideo_on_raw_sample_t should be aware of the lifetime of the video
frames passed as its arguments. In particular, the pointers passed to this function are only
valid till the function has returned control to its caller. If the application needs to store the
video frame for a longer time, – it should either create a shallow reference to that frame, or
make a deep copy of it. Both approaches have their pros and cons. Creating a deep copy of
the video frame can be expensive, because it requires memory allocation and copying of up
to several megabytes of data. However, after such deep copy is created, the application owns
it and is free to hold that copy for as long as it is needed. Any number of frames can be
copied in that way and held simultaneously, – the only limitation here is the amount of RAM.
On the other hand, a shallow copy represents just a reference to a common buffer in memory,
which holds the video data. The shallow copy (reference) creation is cheap for the video frame.
The disadvantage of shallow copies of video frames received by a client application from the
local input video transport channel comes from the fact that the latter uses shared memory
to receive video from the Viinex 3.0 instance. Such shared memory is a scarce resource, and
“shared” here means that the instance of Viinex 3.0 uses it too, and regularly needs to allocate
memory buffers for the new video frames from the same memory pool. If that pool is exhausted,
Viinex 3.0 won’t be able to produce a new raw video frame at the side of the video source.
Such exhaustion can be caused by the client applications that store shallow references to many
video frames for indefinite amount of time. In other words, sharing the video frames between
multiple processes requires correct cooperative behaviour from that processes, namely – the
client implementations should strictly limit the number of stored shallow references to video
frames shared with Viinex 3.0 instance.

5.3 Implementing the H264 video source plugin

In order to implement the H264 video source plugin for Viinex 3.0, one should create a shared
library containing a factory function which returns the instances of IH264VideoSource class.
The complete example of such plugin implementation is available in the vnxvideo library in

212

https://viinex.com/

User’s Guide Viinex 3.0

file FileVideoSource.cpp. Below the most important issues for plugin implementation are
considered.

The factory function to be exposed from the plugin shared library should have the signature
of

typedef int (*vnxvideo_h264_source_create_t)(const char* json_config,
vnxvideo_h264_source_t* source);

The first argument to this function is a string which contains serialized JSON value of init
parameter of configuration (see section 2.1.3 for more details). Second argument of this function
is an out-parameter and should be used to return the pointer to the plugin instance.

This pointer to plugin instance is used in Viinex 3.0 by means of calling vnxvideo_h264_so-
urce_* family of functions (*subscribe, *events_subscribe, *start, *stop, *free). De-
fault implementation of said functions is available in the file vnxvideo.cpp; as it can be
seen, this default implementation treats the argument of type vnxvideo_h264_source_t as
the pointer to an instance of C++ interface class VnxVideo::IH264VideoSource. Therefore,
unless the vnxvideo library is not substantially modified to change these default implemen-
tations of vnxvideo_h264_source_* functions, – the plugin implementation should follow
this convention. Namely, the factory function should return an instance of interface class
IH264VideoSource.

This interface declares four methods: to start and stop the plugin, and to subscribe for video
data and to subscribe for events. The latter is important if the plugin implementation needs
to produce events synchronously with the video stream. Both subscription methods receive a
callback functors. The plugin implementation should use these callbacks to pass the video or
event data to Viinex 3.0 for further processing.

NB! A special care needs to be taken about timestamps related to media
data, when producing that data from a plugin. Unlike with RTSP client,
for plugin video source Viinex 3.0 does not analyze frame or event times-
tamps generated by plugin, but preserves them. Viinex 3.0 assumes that
a live video stream is a sequence of frames with monotonously increasing
timestamps. Moreover, for live streams it is assumed that the times-
tamp does not drift very far from the system clock. While for network-
originated video sources Viinex 3.0 performs such checks and corrections
automatically, – for plugins it’s the plugin author responsibility to fulfill
these assumptions.

The vnxvideo library contains an example implementation of the IH264VideoSource class,
namely – a plugin to read the content of a media file and produce the video stream (from
the video track) and the sequence of events (from the subtitles track). The source code of
this implementation resides in the file FileVideoSource.cpp; it can be used as a template for
implementing other plugins.

5.4 Implementing the VMS integration plugin

An integration of a video management system (VMS) that is not yet integrated in Viinex 3.0
can be added using the plugins mechanism. The configuration for respective integration is
described in section 2.2.9. The most important items in the configuration is the name of

213

https://viinex.com/

User’s Guide Viinex 3.0

dynamically loaded library which contains the plugin implementation, and the name of entry
point function which is called by Viinex 3.0 in order to instantiate the VMS representation.
This function should have the following signature:

typedef int (*vnxvideo_vmsplugin_create_t)(const char* json_config,
vnxvideo_vmsplugin_t* vmsplugin);

The above function should be a factory, which should accept and parse the first parameter
json_config, containing a configuration for connecting to the VMS.

The factory method should return a pointer to the C++ object (by convention, this pointer
should be returned in an out parameter *vmsplugin, while the return value should be used to
signal an error), which is supposed to implement the following class:

class IVmsPlugin {
public:

virtual ~IVmsPlugin() {}
virtual IH264VideoSource* CreateLiveSource(

const CVmsChannelSelector& channelSelector) = 0;
virtual IH264VideoSource*

CreateArchiveSource(const CVmsChannelSelector& channelSelector,
uint64_t begin, uint64_t end,
double speed = 1.0) = 0;

virtual std::vector<std::pair<uint64_t, uint64_t>>
GetArchiveTimeline(const CVmsChannelSelector& selector,

uint64_t begin = 0, uint64_t end = -1) = 0;
virtual IBuffer* GetSnapshot(const CVmsChannelSelector& selector,

uint64_t timestamp) = 0;
};

Four methods in total need be implemented here: the first two serve as a factory methods for
creating the live video source (CreateLiveSource) or a video source for accessing the video
archive (CreateArchiveSource). The third method GetArchiveTimeline serves to acquire
the contents of a video archive from the VMS for respective video channel and, optionally, for
selected time interval represented by its begin and end points. The fourth method GetSnapshot
serves to acquire a JPEG image from the VMS, containing a single frame from either a live
stream.

The implementation of GetSnapshot method can be omitted (may throw an exception); in
that case Viinex 3.0 would use video stream factories to access the H264 data, transcode a
frame to JPEG and use the resulting image as a snapshot. It is recommended though that
the GetSnapshot method is fully implemented, because the VMS may often respond with a
snapshot image more effectively than this can be done by transcoding a part of H264 stream.

214

https://viinex.com/

User’s Guide Viinex 3.0

6 Deployment

6.1 Installation

6.1.1 Windows

A Windows Installer database package (MSI) is provided for installing Viinex 3.0 on Windows
operating systems. The MSI package has an option for attended and unattended installs. The
attended installation is has only one explicit step with only two options to choose: that is the
default configuration file, and default log level.

NB! When deploying Viinex 3.0 on Windows 7, make sure you have at
least Windows 7 Service Pack 1 installed.

NB! Viinex 3.0 only supports installing on 64-bit operating systems.

Viinex 3.0 comes with a number of predefined configuration files, however it is not necessary
to use them. It is possible, while installing Viinex 3.0 to make a choice to keep existing
configuration file, even if it is customized. This is a typical option for the case is configuration
is generated by embedding software.

The configuration file on Windows installations is stored in folder

Program Files\Viinex\etc

The installer places a number of predefined configuration files in that folder; which actual
configuration file will be used is defined by the value of registry key

HKEY_LOCAL_MACHINE\SOFTWARE\Viinex\Viinex30\Config.

The installer sets this value to the value chosen by user (if ever) before the installation. Em-
bedding software may overwrite this value at its discretion. This value may also point to a
configuration directory rather than a single file; in that case, the split configuration logic de-
scribed in section 2.7 is applied. It is possible to choose split configuration when Viinex 3.0 is
installed: there is a corresponding item “Configuration directory (conf.d)” in installer’s GUI,
and the folder for split configuration resides in

Program Files\Viinex\etc\conf.d

Viinex 3.0 is by default installed as Windows service named “Viinex”. It can be started and
stopped with standard commands (net start/net stop or sc start/sc stop), as well as
from Windows Management Console snap-in services.msc.

215

https://viinex.com/

User’s Guide Viinex 3.0

Viinex 3.0 service should be restarted when configuration file or the path to configuration file
is changed to reflect the changes.

Note that Viinex 3.0 should not be installed on the same computer where any of previous
versions of Viinex software is already installed. To install Viinex 3.0 on such host, one should
remove Viinex Foundation 1.4 or Viinex 2.0.

It is also possible to install Viinex 3.0 in unattended mode, which can be useful for including
Viinex 3.0 installer into setup program of your product. For that, one may use standard
command msiexec.exe, or use more sophisticated means involving scripting with WMI. In
case of msiexec.exe, the following or similar syntax can be used:

msiexec /i Viinex-3.0.msi /quiet /log ViinexInstall.log \
INITIAL_CONFIG="PathToConfigFile" \
THREADS=2 \
LOG_ROLLOVER_SIZE=16 \
LOG_ROLLOVER_TIME=24 \
LOG_LEVEL="INFO"

Both the INITIAL_CONFIG and LOG_LEVEL parameters are optional. If INITIAL_CONFIG is not
specified or equals to special reserved value “__KEEP__”, the registry value currently pointing
to configuration file will not be overwritten. Otherwise, it is populated with specified value
(which should be put in place of string “PathToConfigFile” in the above example).

The parameter LOG_LEVEL should take one of the following values: ERROR, WARNING, INFO,
DEBUG. If LOG_LEVEL is not specified, the installer in unattended mode uses value INFO by
default.

Two optional parameters LOG_ROLLOVER_SIZE and LOG_ROLLOVER_TIME specify the maximum
size, in megabytes, of Viinex 3.0 log file, and, respectively, the time, in hours, after which the
log file should be rotated (renamed and reopened anew). When these two parameters (or one
of them) are set for the installe, the latter stores specified values in Windows registry keys

HKEY_LOCAL_MACHINE\SOFTWARE\Viinex\Viinex30\LogRolloverSize,
HKEY_LOCAL_MACHINE\SOFTWARE\Viinex\Viinex30\LogRolloverTime.

That keys are used by Viinex 3.0 when running in Windows service mode.

The optional parameter THREADS may be used to set the number of OS threads that should be
used to execute Viinex 3.0 code (see section 6.1.4 for details). When this parameter is set for
the installer, the latter stores specified number in Windows registry key

HKEY_LOCAL_MACHINE\SOFTWARE\Viinex\Viinex30\Threads.

That key is used by Viinex 3.0 when running in Windows service mode.

There are three more optional parameters which can be set for Viinex 3.0 installer from com-
mand line when running msiexec.exe:

SERVICE_NAME,
SERVICE_DISPLAY_NAME,
SERVICE_DESCRIPTION.

216

https://viinex.com/

User’s Guide Viinex 3.0

These parameters allow an application that embeds Viinex 3.0 to set preferrable name, display
name and descrition of Viinex 3.0 service. Service name is the short string to identify a service,
which is used in net start/net stop commands. It is also displayed in the ‘Name’ column in
the ‘Services’ tab of Windows Task Manager. The SERVICE_NAME parameter should be a short
alphanumeric identifier with no whitespaces. Service display name and service description are
shown in Windows Task Manager and in the Services snap-in for the Microsoft Management
Console. The three mentioned parameters are intended for better identification of Viinex 3.0
service by the end-user: embedding applicaiton developer may change the default values of
that properties so that service name become related to the main application name and/or
branding.

6.1.2 Linux

For Linux, a Debian package viinex-3.0.deb is provided. It can be installed on a Debian-
compatible operating system with command

dpkg -i viinex -3.0. deb

In contrast with Windows installer, deb-package does not contain predefined configuration files,
therefor there’s nothing to be configured to install Viinex 3.0 on Linux.

Viinex 3.0 is installed on Linux as a System V daemon, registering itself into init.d scripts
system. However it does not adds itself to any runlevel; the administrator should do so after
Viinex 3.0 installation using standard Debian update-rc.d utility. The name of Viinex 3.0
service in System V init scripts hierarchy is viinex.

By default, Viinex 3.0 for Linux searches for its configuration file in folder /etc/viinex.conf.d
and writes its log to the system log (using the syslog(3) system API). This behavior can be
overridden in the startup script /etc/init.d/viinex.sh; corresponding parameters are passed
to viinex binary as command line arguments. See also the subsection 6.1.3 for more details.
The path to configuration is specified by --config=PATH command line argument. Its value
may also point to a configuration directory rather than a single file; in that case, the split
configuration logic described in section 2.7 is applied.

The log destination is set by either using the --syslog command line flag (which is used by
default), or a --log-file=PATH command line parameter. There are also two optional param-
eters to specify the log rotation behavior, --log-rollover-size and --log-rollover-time.
These parameters specify the maximum size, in megabytes, of Viinex 3.0 log file, and, respec-
tively, the time, in hours, after which the log file should be rotated (renamed and reopened
anew). Note that older log files are not archived or removed by Viinex 3.0 automatically.
For this reason it is recommended that in production Linux-based environments the --syslog
option is used instead, along with system-wide policies for logs rotation.

6.1.3 Running Viinex 3.0 in foreground

In both Windows and Linux operating systems, Viinex 3.0 can be run as a normal process, not
as a SysV daemon or not managed by Windows NT Service Control Manager. This can be
useful in the scenarios when Viinex 3.0 life cycle should be controlled directly by embedding
software. For instance, you may decide that starting Viinex 3.0 directly using CreateProcess
or fork/exec is more convenient than treating Viinex 3.0 as NT service or a daemon. For
that, Viinex 3.0 executable accepts command-line argument --foreground. When this option
is given, Viinex 3.0 does not detach itself from the terminal in Linux and does not attempt to

217

https://viinex.com/

User’s Guide Viinex 3.0

contact SCM in Windows. Instead, it immediately reads configuration file and tries to provide
requested functionality.

Note that on Windows, when the --foreground option is given, Viinex 3.0 does not use
registry keys to determine the path to configuration file and log level. The only way to pass
the the path to configuration file to Viinex 3.0 is then using another command line option,
--config=. This value may also point to a configuration directory rather than a single file; in
that case, the split configuration logic described in section 2.7 is applied.

There are also three optional command line arguments: --log-level= and --log-file=,
which can be used to control how and where Viinex 3.0 logs its runtime errors or debug
information, and --threads= to set the number of OS threads used by Viinex 3.0 to dispatch
its execution (see section 6.1.4 for details).

An example command line to start Viinex 3.0 would be

viinex --foreground --config=viinex-cfg.json \
--log-level=INFO --log-file=viinex.log

Upon startup in foreground mode, Viinex 3.0 is waiting for an arbitrary data on its standard
input before stopping. If Viinex 3.0 is ran manually in a terminal, an “ENTER” key on
the keyboard may be hit to stop it. If Viinex 3.0 with argument --foreground is started
programmatically from client’s software using CreateProcess, one should use standard input
file descriptor of newly created process, which is returned in STARTUPINFO structure, to write
an arbitrary string ending with \r\n to that file descriptor, when Viinex 3.0 instance is required
to stop.

6.1.4 Setting the number of OS threads

Viinex 3.0 makes use of lightweight (also known as “green”) threads for performing the tasks
that can be done in parallel. These threads are dispatched across one or more “real” (operating
system) threads, which, in turn, are scheduled to be executed on CPU cores.

Viinex 3.0 allows for setting the number of OS threads employed for its execution. Viinex 3.0
lets users to set that parameter as the key in Windows registry (which is done by Windows
Installer if the THREADS property is passed to msiexec) or as the command-line argument
--threads=.

By default, Viinex 3.0 uses one OS thread per each CPU core for dispatching the lightweight
threads. There is no sense in setting the number of OS threads above that value. However,
there are cases when the number of OS threads that are used in Viinex’ lightweight threads
dispatching needs to be limited. Note that there may also be other (“dedicated”) OS threads
created by Viinex 3.0, depending on what objects are specified in Viinex 3.0 configuration. This
is the case for image processing tasks like facial detection and vehicle license plate recognition.
The --threads= setting does not affect these dedicated threads.

The need for limiting the number of OS threads used by Viinex 3.0 appears when there is a
requirement to reserve the CPU cores for some other tasks running on the same server. There
could also be a motivation to limit the number of threads on a Windows host with many CPU
cores (like 16 and above) to save the address space in 32-bit Viinex 3.0 process1

1Each thread requires its own stack to be allocated, which, in its turn, occupies certain amount of virtual
address space. In certain workload scenarios Viinex 3.0 process on the server with many CPU cores may even
run out of 32-bit address space (even with modest actual memory footprint) unless the number of OS threads
(and stacks) is limited.

218

https://viinex.com/

User’s Guide Viinex 3.0

6.2 License key management

For license keys management, viinex-lm-upgrade utility is included in Viinex 3.0 distribution,
which can be used to

• enumerate attached USB dongles,

• show an information in each dongle’s license time limit, the set of modules which license
is written in a dongle, and the quantity of licenses,

• upgrade the USB dongle contents “remotely”, without the need to send it to the licensor
(in case of license prolongation or changes is the number or types of licensed objects’,
and

• show or update the information contained in a “emulated” license storage.

To start the license key management utility, its executable should be ran. The utility has a
simple command prompt user interface. The commands to interact with viinex-lm-upgrade
utility are described below.

The help displays a brief instruction on commands available in the utility.

6.2.1 Obtaining information on attached USB dongles

The enum command enumerates the list of keys currently attached to the computer. An
example output from that command is given:

viinex-lm-upgrade: enum
Found 1 dongle(s)
Index Serial
0 97502500000046ae

An “index” and a serial number is shown for each USB dongle attached. For the case if more
than one dongle is attached, all other commands described below accept special arguments,
-i INDEX or -s SERIAL. By means of that arguments one may specify the specific dongle,
which the issued command should be applied to.

6.2.2 Obtaining the license document from a USB dongle

The show command shows the content of license document stored in the USB dongle. An
example output from that command is:

viinex-lm-upgrade: show
======================================
Dongle serial: 9763370000000cb1
Product : 7ae0 (Viinex20)
Time limit : 2017-04-02 22:38:35 UTC

Features:

ViinexCore 1

219

https://viinex.com/

User’s Guide Viinex 3.0

IpVideochannel 16
VideoArchive 2
LPRecognizer 4
LPRecognizer_Viinex 4
LPRecognizer_Static10 4

======================================

6.2.3 Obtaining information on PC hardware

As mentioned in section 2.6, there are two kinds of license documents: those bound to a USB
dongle, and those bound to a PC hardware.

If you were provided with a USB dongle to run Viinex 3.0, in most cases that dongle already
contains an appropriate license document in it. If a license document upgrade is required for
that dongle, the Viinex 3.0 licensor will be able to generate it based on USB dongle unique
identifier which is reported to you by enum command.

However if you’ve requested a temporary (demo) or a permanent (production) license for
Viinex 3.0 to run it without a USB dongle, you’ll have to provide the licensor with information
about your PC hardware. Such information can be gathered using the hwid command to
viinex-lm-upgrade utility. This command takes no additional arguments. An example output
from that command is:

viinex-lm-upgrade: hwid
This PC hardware id is: kDMQptE6uNFPfFvk1hq0X14eJDeGTZKn, hypervisor not detected

In the above example, the hashed and base64-encoded information on PC hardware is

kDMQptE6uNFPfFvk1hq0X14eJDeGTZKn.

This string exactly should be forwarded to the licensor, along with the request for license
document. In response, the Viinex 3.0 licensor will provide you with a license document
suitable for using in the license part of the configuration (see section 2.6).

6.2.4 Updating a license document on the USB dongle

The update command can be used to update the license document stored in the USB dongle.
This command takes the new encrypted license document as its mandatory argument. An
example output from the update command is:

viinex-lm-upgrade: update POR2n3jaCzZW/8FM12znbke3y0gBsXn2/Kzus4xKPYN3QNdtgIJKWK
xMjCrObpsSG5Oev0ndT3pw79FuwwIPkAbaGZSh/lP6GHQA9eaJHUagtU+C2/pYeU3ncPgjdc6B4p3CE4
ooaA+8kBSo4ACInzzv2noefdCFrZJUD1tKc3TYuqHpEi+xkcFft7I/34qV03JErgSl+y0GQBqAHTFtDw
sPF3VDIeRCBub3KeTm1XC6JivwrLQ0mp3QacSdSKhPqmYUGuxzZbL/aoOyiFNJVU4Cah6YjMC/RvMpNi
LAf0M=
License document updated; firmware responded: 97502500000046ae

The message in the last line of the output means that license document was updated success-
fully. When this happens, the firmware built into the USB dongle replies with dongle serial
number; this is an indicator of the fact that the firmware has ran without errors. In case of
errors the reply message is different:

220

https://viinex.com/

User’s Guide Viinex 3.0

viinex-lm-upgrade: update 9RIkOti...pKeZw=
Error: license document update failed: 0651

Such message is produced if an attempt is made to update the dongle which serial number
differs from the one for which the license document was issued. Error code (0651 in above
example) can be reported to Viinex support team to diagnose the actual reason of license
document upgrade failure.

6.2.5 Working with an “emulated” license storage

The viinex-lm-upgrade utility is capable of working with so called “emulated” license storage.
An “emulated” license storage is a fixed place in the operating system where a license document
can be stored. To be precise, on Windows this is a registry key

HKLM\SOFTWARE\Viinex\Viinex30\License.

On Linux, this is a binary file /var/lib/viinex/license.

The purpose of the concept of “emulated” license storage is to mimick the behaviour of a
Senselock dongle holding Viinex license document, with the absence of the Senselock dongle
itself. A software-bound license document (i.e. the document bound to a hardware ID or to a
MAC address) may be written to an emulated storage by means of command update, and it
can be read from that storage by means of command show, just as described in sections 6.2.4
and 6.2.2. The differences from update and show commands working with USB dongles are
that

1. An “emulated” storage is only used when no Senselock dongles are attached to the host.
There are no command line switches to force the use of the “emulated” storage when
a Senselock dongle is attached. An “emulated” storage is chosen implicitly. The same
is true for Viinex 3.0 itself: an attempt is made to read the license document from
“emulated” storage if and only if there is no USB dongles attached (and also if there
is no license parameter specified in Viinex 3.0 configuration. Respective policies are
described in section 2.6).

2. The update and show commands working with an emulated storage only accept the
software-bound license documents, while that commands for USB dongles only accept
license documents for USB dongles.

3. While viinex-lm-upgrade verifies a license document that is being written to the “em-
ulated” license storage by means of update command, – it does not make any checks
whether this specific license document is suitable for the current host. This behaviour
is different from the update command for USB dongles, where it is impossible to write
a license document on the dongle for which this document was not intended. So some
additional care needs to be taken about this with software-bound license documents and
“emulated” storage.

4. Unlike the USB-oriented counterpart, the update command for an “emulated” storage
requires an elevated privileges on Windows. On Linux there is no difference because
viinex-lm-upgrade needs root privileges to access a USB device, and it likewise needs
root privileges to create or modify a file in /var/lib/viinex directory.

221

https://viinex.com/

User’s Guide Viinex 3.0

NB! In order to update a license document in the “emulated” storage,
viinex-lm-upgrade utility needs to be run with elevated privileges (Run
as administrator) on Windows.

To sum up, an “emulated” license storage provides the mechanism to specify a software-bound
license document for Viinex 3.0 without the need to modify Viinex 3.0 configuration, which
may be convenient in some use cases. An “emulated” license storage gets checked by Viinex 3.0
runtime in the last place, if no license documents can be found in conventional places (e.g.
Viinex 3.0 configuration and attached Senselock USB dongles).

6.2.6 Batch mode

All commands available in viinex-lm-upgrade utility can be issued not only in the interactive
mode, but in the batch mode as well. For this, full text of the command should be appended
to the name of viinex-lm-upgrade utility as its command line arguments. For example:

./viinex-lm-upgrade show -s 9763370000000cb1
======================================
Dongle serial: 9763370000000cb1
Product : 7ae0 (Viinex20)
Time limit : 2017-04-02 22:38:35 UTC

Features:

ViinexCore 1
IpVideochannel 16
VideoArchive 2

======================================

222

https://viinex.com/

User’s Guide Viinex 3.0

References

[1] ISO/IEC 14496-12:2015. Information technology – Coding of audio-visual objects –
Part 12: ISO base media file format http://www.iso.org/iso/catalogue_detail.htm?
csnumber=68960

[2] ISO/IEC 13818-1:2015. Information technology – Generic coding of moving pictures and
associated audio information – Part 1: Systems http://www.iso.org/iso/ru/home/
store/catalogue_tc/catalogue_detail.htm?csnumber=67331

[3] R. Pantos, Ed., et al. HTTP Live Streaming (RFC draft) https://datatracker.ietf.
org/doc/draft-pantos-http-live-streaming/

[4] H. Schulzrinne et al. Real Time Streaming Protocol (RTSP) https://www.ietf.org/
rfc/rfc2326.txt

[5] H. Schulzrinne at al. RTP: A Transport Protocol for Real-Time Applications https:
//www.ietf.org/rfc/rfc3550.txt

[6] Y.-K. Wang et al. RTP Payload Format for H.264 Video https://tools.ietf.org/rfc/
rfc6184.txt

[7] H. Krawczyk, M. Bellare, R. Canetti. HMAC: Keyed-Hashing for Message Authentication
https://tools.ietf.org/rfc/rfc2104.txt

[8] ONVIF Core Specification. Version 2.2, May 2012 https://www.onvif.org/specs/core/
ONVIF-Core-Specification-v220.pdf

[9] ONVIF Media Service Specification. Version 2.4, August 2013 https://www.onvif.org/
specs/srv/media/ONVIF-Media-Service-Spec-v240.pdf

[10] ONVIF Imaging Service Specification. Version 2.2.1, December 2012 https://www.onvif.
org/specs/srv/img/ONVIF-Imaging-Service-Spec-v221.pdf

[11] ONVIF Device IO Service Specification. Version 2.2, May 2012 https://www.onvif.org/
specs/srv/io/ONVIF-DeviceIo-Service-Spec-v220.pdf

[12] ONVIF PTZ Service Specification. Version 2.2.1, December 2012 https://www.onvif.
org/specs/srv/ptz/ONVIF-PTZ-Service-Spec-v221.pdf

[13] J. Franks et al. HTTP Authentication: Basic and Digest Access Authentication https:
//tools.ietf.org/html/rfc2617

[14] YUV Video Subtypes. https://msdn.microsoft.com/en-us/library/windows/
desktop/dd391027%28v=vs.85%29.aspx

[15] I. Fette, A. Melnikov. The WebSocket Protocol https://tools.ietf.org/html/rfc6455

223

http://www.iso.org/iso/catalogue_detail.htm?csnumber=68960
http://www.iso.org/iso/catalogue_detail.htm?csnumber=68960
http://www.iso.org/iso/ru/home/store/catalogue_tc/catalogue_detail.htm?csnumber=67331
http://www.iso.org/iso/ru/home/store/catalogue_tc/catalogue_detail.htm?csnumber=67331
https://datatracker.ietf.org/doc/draft-pantos-http-live-streaming/
https://datatracker.ietf.org/doc/draft-pantos-http-live-streaming/
https://www.ietf.org/rfc/rfc2326.txt
https://www.ietf.org/rfc/rfc2326.txt
https://www.ietf.org/rfc/rfc3550.txt
https://www.ietf.org/rfc/rfc3550.txt
https://tools.ietf.org/rfc/rfc6184.txt
https://tools.ietf.org/rfc/rfc6184.txt
https://tools.ietf.org/rfc/rfc2104.txt
https://www.onvif.org/specs/core/ONVIF-Core-Specification-v220.pdf
https://www.onvif.org/specs/core/ONVIF-Core-Specification-v220.pdf
https://www.onvif.org/specs/srv/media/ONVIF-Media-Service-Spec-v240.pdf
https://www.onvif.org/specs/srv/media/ONVIF-Media-Service-Spec-v240.pdf
https://www.onvif.org/specs/srv/img/ONVIF-Imaging-Service-Spec-v221.pdf
https://www.onvif.org/specs/srv/img/ONVIF-Imaging-Service-Spec-v221.pdf
https://www.onvif.org/specs/srv/io/ONVIF-DeviceIo-Service-Spec-v220.pdf
https://www.onvif.org/specs/srv/io/ONVIF-DeviceIo-Service-Spec-v220.pdf
https://www.onvif.org/specs/srv/ptz/ONVIF-PTZ-Service-Spec-v221.pdf
https://www.onvif.org/specs/srv/ptz/ONVIF-PTZ-Service-Spec-v221.pdf
https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc2617
https://msdn.microsoft.com/en-us/library/windows/desktop/dd391027%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd391027%28v=vs.85%29.aspx
https://tools.ietf.org/html/rfc6455
https://viinex.com/

User’s Guide Viinex 3.0

[16] M. Baugher et al. The Secure Real-time Transport Protocol (SRTP) https://tools.
ietf.org/html/rfc3711

[17] E. Rescorla, N. Modadugu. Datagram Transport Layer Security Version 1.2 https://
tools.ietf.org/html/rfc6347

[18] D. McGrew, E. Rescorla. Datagram Transport Layer Security (DTLS) Extension to Es-
tablish Keys for the Secure Real-time Transport Protocol (SRTP) https://tools.ietf.
org/html/rfc5764

[19] J. Rosenberg et al. Session Traversal Utilities for NAT (STUN) https://tools.ietf.
org/html/rfc5389

[20] A. Keranen, C. Holmberg, J. Rosenberg. Interactive Connectivity Establishment (ICE):
A Protocol for Network Address Translator (NAT) Traversal https://tools.ietf.org/
html/rfc8445

[21] M. Handley, V. Jacobson, C. Perkins. SDP: Session Description Protocol https://tools.
ietf.org/html/rfc4566

[22] S. Nandakumar, C. Jennings. Annotated Example SDP for WebRTC (draft) https://
tools.ietf.org/html/draft-ietf-rtcweb-sdp-11

[23] ECMA International. ECMAScript Language Specification (ECMA-262, 5.1 Edition)
http://www.ecma-international.org/ecma-262/5.1/ECMA-262.pdf

[24] Viinex 2.0 demo user interface implementation source code. https://github.com/
viinex/viinex-demo-ui/blob/5026c9c7b97ccd50b95007044742fe453bbf20d8/src/
app/login.service.ts#L104

[25] ISO 6346:1995(E). Freight containers — Coding, identification and marking https://www.
iso.org/obp/ui/#iso:std:iso:6346:ed-3:v1:en

224

https://tools.ietf.org/html/rfc3711
https://tools.ietf.org/html/rfc3711
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc5764
https://tools.ietf.org/html/rfc5764
https://tools.ietf.org/html/rfc5389
https://tools.ietf.org/html/rfc5389
https://tools.ietf.org/html/rfc8445
https://tools.ietf.org/html/rfc8445
https://tools.ietf.org/html/rfc4566
https://tools.ietf.org/html/rfc4566
https://tools.ietf.org/html/draft-ietf-rtcweb-sdp-11
https://tools.ietf.org/html/draft-ietf-rtcweb-sdp-11
http://www.ecma-international.org/ecma-262/5.1/ECMA-262.pdf
https://github.com/viinex/viinex-demo-ui/blob/5026c9c7b97ccd50b95007044742fe453bbf20d8/src/app/login.service.ts#L104
https://github.com/viinex/viinex-demo-ui/blob/5026c9c7b97ccd50b95007044742fe453bbf20d8/src/app/login.service.ts#L104
https://github.com/viinex/viinex-demo-ui/blob/5026c9c7b97ccd50b95007044742fe453bbf20d8/src/app/login.service.ts#L104
https://www.iso.org/obp/ui/#iso:std:iso:6346:ed-3:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:6346:ed-3:v1:en
https://viinex.com/

	Overview
	Configuration
	General purpose objects
	RTSP video source
	ONVIF device
	H264 video source plugin
	Raw video source
	Video renderer
	Stream switch
	Video archive
	Recording controller
	Rules
	Replication source
	Replication sink
	Modbus GPIO-related event source
	Video channel from a third-party VMS
	PostgreSQL connection
	Script
	External process
	RTSP server
	WebRTC server
	Web server
	Publisher for objects in configuration clusters
	Floating license server

	Third-party video management systems
	Milestone XProtect
	Geutebrück G-Core
	Qognify (SeeTec) Cayuga
	Pelco VideoXpert
	Bosch BVMS
	DSSL Trassir
	Macroscop and Eocortex
	ITV|AxxonSoft Intellect
	Plugins for other VMS integrations

	Video analytics
	Vehicle license plate recognition
	Freight container code recognition
	Face detection
	Railcar identification number recognition

	Common configuration sections
	RTP transport priority
	Credentials database
	Raw video device operation mode
	Video encoder
	Overlay
	Analytics engine
	Video analytics module
	Video renderer layout

	Links
	Video source – Video archive
	Video source – Recording controller
	Recording controller – Video archive
	Video source – Video renderer
	Video source – Stream switch
	Video source – WebRTC server
	Video source – RTSP server
	Video archive – RTSP server
	Video source – Web server
	Event source – Web server
	Snapshot source – Web server
	Overlay control – Web server
	Layout control – Web server
	PTZ control – Web server
	WebRTC server – Web server
	Vehicle license plate recognizer
	Face detection
	Recording controller – Web server
	Recording controller – Rule
	Rule – Event source
	Video archive – Web server
	Video archive – Replication source
	Video archive – Replication sink
	Replication sink – Web server

	License information
	Local license document
	Floating license client

	Split configuration

	HTTP API
	Web server
	Enumerate published components
	Obtain the metainformation on published components

	Authentication
	Authentication challenge
	Authentication response

	Environment
	Attached SenseLock USB dongles
	License document content
	Probe for licenses
	Obtain Viinex 3.0 software version
	Discover visible ONVIF devices
	Probe an ONVIF device
	Discover connected raw video sources

	Video source
	Status information
	Live stream

	Video archive
	Status and statistics
	Archive contents
	Disk usage for a specific time interval
	Overall disk usage for a specific time interval
	Media export
	Media playback
	Remove records from video archive

	Recording controller
	Status information
	Change recording status
	Flush accumulated video data to disk

	Managed replication
	Enqueue a new replication task
	Get information on replication task
	Manage status of replication task
	Remove a replication task
	Enumerate all replication tasks
	Get the timeline from a VMS channel

	Snapshots
	Get a snapshot from the snapshot source

	Overlay
	Clear overlay
	Change overlay bitmap
	Change overlay HTML

	Video renderer
	Layout control
	Get the names of linked video sources
	Set the layout for the video renderer
	Set the background color or background image
	Set or clear the image for viewports of disconnected video sources

	Stream switch
	Get the names of linked video sources
	Switch to a specific stream

	PTZ control
	Get the PTZ node description
	Get presets
	Create a preset
	Remove a preset
	Update a preset
	Go to a specified preset
	Update the ``home'' position
	Go to the ``home'' position
	Get the coordinates of a current position
	Move the PTZ device
	Stop the PTZ motion

	WebRTC signaling
	Obtain a general information on WebRTC server
	Create a new session
	Media data request format
	Provide an SDP answer for a session
	Update an existing session
	Get session status
	Gracefully shutdown a WebRTC session

	PostgreSQL database
	Get the summary for events stored in PostgreSQL database
	Retreive Viinex 3.0 events from PostgreSQL database

	Vehicle license plate recognition
	Perform recognition on a given still image
	Perform recognition on a video source
	Obtain a snapshot of a recently recognized vehicle

	Freight container code recognition
	Perform recognition on a given still image
	Perform container code recognition on a video stream
	Obtain a snapshot of a recently recognized container code

	Video analytics in ``freeflow'' mode
	Railcar identification number recognition
	Face detection
	Perform face detection on a given still image
	Perform face detection on a video sequence
	Obtain a snapshot of a recently detected face

	Abstract interfaces
	Stateful
	Updateable

	WebSocket interface
	Configuration clusters
	Enumerate existing clusters
	Create a new cluster of objects
	Remove an existing cluster of objects
	Enumerate components published by a cluster
	Obtain the metainformation on components published by a cluster
	Access Viinex 3.0 objects in configuration clusters
	Obtaining events from a cluster

	Scripting and JS API
	Execution model and handlers
	onload
	ontimeout
	onevent
	onupdate
	Example
	Asynchronous operations and anonymous callbacks

	General puropose functions
	vnx.publish()
	vnx.timeout()
	vnx.timer.delay()
	vnx.event()
	Logging
	require() and modules
	Linked objects
	Configuration clusters
	Local filesystem
	HTTP client

	Application interfaces
	RecControl
	PtzControl
	LayoutControl
	StreamSwitchControl
	Stateful
	Updateable
	SnapshotSource

	Native API
	Brief C and C++ API overview
	Acquiring raw video by means of local transport
	Implementing the H264 video source plugin
	Implementing the VMS integration plugin

	Deployment
	Installation
	Windows
	Linux
	Running Viinex 3.0 in foreground
	Setting the number of OS threads

	License key management
	Obtaining information on attached USB dongles
	Obtaining the license document from a USB dongle
	Obtaining information on PC hardware
	Updating a license document on the USB dongle
	Working with an ``emulated'' license storage
	Batch mode

	References

